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ABSTRACT: N-body simulations of the Sun, the planets, and small celestial bodies are commonly used to model the evolution 

of the Solar System. Enormous numerical integrators for performing such simulations have been developed; see, for example, 

[1, 2]. The primary objective of this paper is to analyze the error growth for an embedded Runge-Kutta-Nyström (ERKN) 

integrator. The experiments are performed with round-off error control technique for ERKN64 integrator applied to the Jovian 

problem over a long interval of duration, as long as one million years, with the local error tolerances ranging from 10
-16

 to 10
-

8
. Error is estimated in terms of global error in the position and velocity, and the relative error in energy and angular 

momentum. 
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1. INTRODUCTION 
To study the dynamics of the Solar System, computational 

astronomers make use of long term N-body simulations. 

These simulations are performed by developing the 

mathematical model of the problem. This model takes the 

form of first- and second-order initial value problem (IVP). 

The problem we are discussing is of the form, 
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where      ́   
  denote the initial positions and velocities, 

  is the dimension of the IVP, and   is sufficiently smooth 

function. Numerical approximation techniques are used to 

solve these problems, because complexity of the differential 

equations make analytic solution very hard to find. Different 

integrators are used to find the numerical approximations of 

these differential equations, for example, Runge-Kutta [3, 4], 

linear multistep [5], and Runge-Kutta-Nyström [6]. 

1.2. Jovian problem 

The Jovian problem [7] predicts the orbital motion of the Sun 

and outer four Gas-giants, Jupiter, Saturn, Uranus and 

Neptune interacting with each other gravitationally. In Jovian 

problem, the bodies are ordered from Sun to Neptune and 

three dimensional Cartesian coordinate system having origin 

at the barycenter of the bodies is used. Let ],,[ iiii zyxr   

be the position vector of the     body then the equations of 

motion for the     body can be written as  
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Where ‖ ‖ denotes the L2-norm and    is gravitational 

constant   times the mass    of     body           .  As 

a whole, we have a system of fifteen second-order ordinary 

differential equations. The distance is measured in 

astronomical units (1AU = 150,000,000 km), independent 

variable time in Earth days and mass as Solar mass. 

2. MATERIAL AND METHODS 
Explicit Runge-Kutta-Nyström methods (ERKN) were 

introduced by E.J Nyström in 1925 [6]. These methods 

directly solve a system of second-order ordinary differential 

equations. For efficiency purpose we have used adaptive 

step-size technique. In this technique the local error is 

calculated at each single step such that a pair of formulae of 

different orders have same function evaluations. The 

numerical solution is often obtained by using higher-order 

formula and error is calculated by the lower-order formula to 

gain maximum efficiency [8]. The pair implemented in this 

fashion is said to be implemented in higher-order mode. The 

variable step size integrator ERKN64 is used in this paper, 

which is 6 stage, 6-4 FSAL pair introduced by Dormand and 

Prince [9]. 

2.1. Round off error control technique for ERKN64 

integrator 

In this paper the possibility of reducing the round-off error in 

ERKN64 integrator is examined by using compensated 

summation technique [10]. The core theme of this technique 

is to anticipate the dominant term which contributes to round-

off error. Consider the following solution formula 
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Equation (3) contains three types of errors; the round off error 

in the construction of 1

nyh  and 
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, the integration 

error in 1ny  from the previous time-step and round off error 

due to the addition of all the terms on the right hand side of 

(3). If the step size is small then 
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become 

smaller than 1ny . Addition of these two terms will dominate 

the contribution to round-off error, which will be estimated in 

each time-step and solution will be update as follow. First 

calculate 
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where   is the estimated round-off error calculated on the 

previous time-step (initially 0 ). 
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and   are comparatively smaller than

1ny , so the error caused in the formation of   is negligible. 

The solution is then updated to 

 1nn yH                              (5) 

And for the next time-step the round off error is estimated as 

  1nn yH                          (6) 
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The solution is then updated as      . The same concept is 

used for derivative formula. 

 

3. RESULTS AND DISCUSSION 
The performance of the ERKN64 is analyzed with round-off 

error control (WD) and without round-off error control (WO) 

technique applied to the Jovian problem. The interval of 

integration is one million years and error is calculated at each 

subinterval of 100 years. The tolerances are used in the range 

from 10
-16

 to 10
-8

. The smallest tolerance is close to machine 

precision (2.2 ×10
-16

)   

 
Figure 1. Maximum global error in position using with and 

without round-off error control in ERKN64 applied to the 

Jovian problem at tolerances ranging from 10-16 to 10-8 

 

The first set of experiments is performed to obtain the 

maximum global error in the position as shown in Figure 1. 

The values of maximum global error for WD vary from 

1.96×10
-06

 to 9.98×10
-02

. Whereas for WO, the range is from 

3.04×10
-06

 to 9.99×10
-02

. From Figure 1 we see that the 

maximum global error has been decreased at a constant rate 

of 10
1.5

 AU and there is no major effect of round-off error. 

The round-off error effect became significant when the 

tolerance is decreased to 10
-16

. The most prominent 

differences between WO and WD were observed at 

tolerances 10
-11

, 10
-14

 and 10
-15

, where the global error of WO 

is 247.45%, 230.60% and 533.07% greater than WD, 

respectively. While at 10
-12

 the global error of WD is 16.65% 

greater than WO, but the maximum global error values are so 

small at this tolerance that this small percentage has no 

significance. 

Figure 2 depicts the error growth in position for WD and 

WO. Error growth with respect to position is calculated using 

a reference solution obtained in quadruple precision by WD 

with tolerance 10
-18

. The integration was performed over 10
6
 

years using TOL = 10
-14

, 10
-15

, 10
-16

. The selection of these 

tolerances is due to the fact that they are close to the machine 

precision. 

 
Figure 2. Global error growth in Position using with and 

without round-off error control in ERKN64 applied to the 

Jovian problem at selected tolerances 10-16, 10-15 and 10-14 

 

The Figure 2 shows further that the error growth for WD at 

10
-14

 is minimum for the whole integration expect for some 

short interval of 10
5.3

 to 10
5.6

 years. WD at 10
-16

 maintained 

its error less than WO until at 10
5.8

 there was a cross over and 

WO at 10
-14

, 10
-15

 became more accurate.   

Over all it has been observed that the performance of WD is 

much better than WO. After 10
3
 years WD at 10

-14
 maintains 

its best accuracy and WD at 10
-15

 became second best up to 

10
5.5

 afterwards WO at 10
-14

 become more accurate. It is 

noted that WD and WO at 10
-15

 maintain the difference of 

approximately 1.5 AU. 

Most of the plots of error growth in position have high 

oscillations. Due to which results deduction was very 

difficult. In order to smooth the data, Matlab filter command 

is used with optimal window size. We have performed 

experiments with window sizes 1, 10, 20 and 50 as shown in 

Figure 3. Figure 3(a) shows the plots when no filter command 

is used. There are so many oscillations that it is very difficult 

to distinguish the plots. When filter command is used with 

window size 10 the oscillations are reduced but still not 

feasible to deduce results as shown in Figure 3(b). Figure 3(c) 

shows that the plots are very much less oscillatory but some 

points are still over lapping. Here window size of 20 was 

used. Figure 3(d) shows that with window size of 50 all plots 

are clear enough to deduce results. Throughout the paper, we 

have used filter command with window size 50. Let us now 

consider the accuracy of the integrator ERKN64 in terms of 

relative error in the angular momentum and energy. 

Figure 4 explains the error growth in the angular momentum 

with and without round-off error control technique using the 

same tolerances and window size as for the set of 

experiments performed in Figure 2. 
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 (a) 

 (b) 

 (c) 

 (d)

Figure 3. Experiments using Matlab function filter with window sizes 1, 10, 20, and 50.

 
Figure 4. The relative error growth in Angular momentum 

using with and without round-off error control in ERKN64 

applied to the Jovian problem at selected tolerances 10-16, 10-15 

and 10-14 

 

Figures 4 shows the linear error growth in WD which has 

more accuracy at TOL =10
-14

 and also attains the best 

accuracy among all the experiments performed in Figure 4. 

We observe that WD at 10
-15

 remains the second best in terms 

of accuracy. The WO at TOL=10
-16

, 10
-15

, 10
-14

 shows some 

oscillations after ten thousand years. This indicates that the 

round-off error is the possible cause of these oscillations. 

Approximately linear error growth in energy (not shown 

here) has also been observed especially with TOL=10
-14

. 

 

4. CONCLUSION 
The main objective of this paper was to investigate the error 

growth of ERKN64 integrator applied to the Jovian problem 

with round-off error control technique. Throughout the paper, 

we examined the error growth of the global error in the 

positions and velocities of the bodies, and the relative error in 

the angular momentum and energy. The experiments were 

performed over 10
6
 years with the local error tolerances 

ranging from 10
-16

 to 10
-8

. We observed that the round-off 

error control technique is very effective, especially, with 

tolerances close to the machine precision. For example, with 

Tol= 10
-15

 and 10
-16

, the maximum global error in position 

obtained without round-off error control technique were 

approximately 230.60% and 533.07% more than those 

obtained with round-off error control technique. 
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