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1. INTRODUCTION 
Random fixed point theorems are stochastic generalization 

of classical fixed point theorems. Random fixed point 

theorems for contraction mappings on separable complete 

metric spaces were first proved by Spacek [23] and Hans 

[5,6]. The survey article by Bharucha-Ried [1] attereched the 

attention of several mathematicians (see Zhang and Huang 

[26], Hans [5,6], Huang [7], Itoh [10], Lin [14], 

Papageorgiou [16,17], Shahzad and Hussain [21], Shahzad 

and Latif [22], Tan and Yuan [24] and give wings to this 

theory. Itoh [10] extended Spacek and Hans’s theorem to 

multivalued contraction mappings. The stochastic version of 

the well-known Schauder’s fixed point theorem was proved 

by Sehgal and Singh [20], Ciric and Lakshmikantham [4], 

Zhu and Xiao [27], Hussain et all [9] and Khan et all [11] 

proved some coupled random fixed point and coupled 

random coincidence results in partially ordered complete 

metric spaces. Ciric et all [3] proved fixed point theorems 

for single-valued mappings, extended to a coincidence 

theorems for a pair of a random operator :f X X   

and a multi-valued random operator : ( )T X CB X 

. The aim of this article is to prove a stochastic analog of the 

Hussain and Alotaibi [8] coupled coincidences for multi-

valued contractions in partially ordered metric spaces for a 

pair of random operators g : X X   and a multi-

valued random operator : ( )T X CL X  .  

2. Preliminaries 

Let ( , )X d be a metric space. We denote by ( )CB X the 

collection of non-empty closed bounded subsets of X .  

For , ( )A B CB X and x X , suppose that ( , )D x A

inf ( , )
a A

d x a


  and  

( , ) max{sup ( , ),sup ( , )}
a A b B

H A B D a B D b A
 

 , such a  

mapping H is called a Hausdorff metric on ( )CB X  

induced by d . 

Definition 2.1.  [8]. An element x X is said to be a fixed 

point of a multi-valued mapping : ( )T X CB X if and 

only if x Tx . 

Definition 2.2. [2]. Let X be a nonempty set and  

:F X X X  be a given mapping. An element

( , )x y X X  is said to be a coupled fixed point of the 

mapping F if ( , )F x y x  and ( , ) yF y x  . 

Definition 2.3. [13]. Let ( , )x y X X  , :F X X : 

X and g : X X . We say that the pair ( , )x y is a 

coupled coincidence point of F and g if ( , )F x y gx  

and ( , )F y x gy  for all ,x y X . 

Definition 2.4 [8]. A function :f X  is called lower 

semi-continuous if and only if for any sequence 

{ },{ }n nx y X and ( , )x y X X  , we have,  

lim( , ) ( , )n n
n

x y x y


   

implies 

( , ) liminf ( , ).n n
n

f x y f x y


  

Let ( ) : { , }CL X A X A A A    , where A denotes 

the closure of A in the metric space ( , )X d . Let ( , )X d be 

a metric space endowed with a partial order and 

:G X X be a given mapping. We define the set 

X X   by : {( , ) ( ) ( )}x y X X G x G y     . 

In [18], Samet and Vetro introduced the binary relation R

on ( )CL X defined by ,ARB A B    where

, ( )A B CL X . 

Definition 2.5 [8]. Let : ( )F X X CL X  be a given 

mapping. We say that F is a  -symmetric mapping if and 

only if ( , ) ( , ) ( , )x y F x y R F y x . 

Example 2.6. [8]. Suppose that [0,1]X  , endowed with 

the usual order . Let :[0,1] [0,1]G  be the mapping 

defined by ( )G x M for all [0,1]x , where M is a 

constant in [0,1] . Then [0,1] [0,1]   and

: ( )F X X CL X  is a  -symmetric mapping. 

Definition 2.7. [19]. Let : ( )F X X CL X  be a given 

mapping. We say that ( , )x y X X  is a coupled fixed 
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point of F if and only if ( , )x F x y and ( , )y F y x . 

Definition 2.8. [8]. Let : ( )F X X CL X  be a given 

mapping and let :g X X . We say that

( , )x y X X  is a coupled coincidence point of F and 

g if and only if ( ) ( , )g x F x y  and ( ) ( , )g y F y x . 

Hussain and Alotaibi [8] proved the following theorems for 

the existence of coupled coincidence for multi-valued 

nonlinear contractions using two different approaches, first 

is based on  -symmetric property recently studied in [19] 

and second one is based on mixed g -monotone property 

studied by Lakishmikantham and C
/
iric [13]. 

Theorem 2.9. [8]. Let ( , )X d be a metric space endowed 

with a partial order   and   . Suppose that

: ( )F X X CL X  is  -symmetric mapping, 

:g X X is continuous, gX is complete, the function 

: ( ) ( ) [0, )f g X g X    defined by 

( , ) ( , ( , )) ( , ( , ))f gx gy D gx F x y D gy F y x   for all 

,x y X is a lower semi-continuous and that there exists a 

functio :[0, ] [ ,1), 0 1a a     satisfying 

limsup ( ) 1
r t

r


  for each [0, )t  . Assume that for 

any ( , )x y  there exist ( , )gu F x y and 

( , )gv F y x  satisfying  

( ( , ))[ ( , ) ( , )] ( , )f gx gy d gx gu d gy gv f gx gy  

Such that  

( , ) ( ( , )[ ( , ) ( , )]f gu gv f gx gy d gx gu d gy gv  . 

Then, F and g have a coupled coincidence point, that is, 

there exists 1 2( , )gz gz gz X X    such that 

1 1 2( ,z )gz F z  and 2 2 1( , )gz F z z . 

Theorem 2.10. [8]. Let ( , )X d be a metric space endowed 

with a partial order   and   . Suppose that

: ( )F X X CL X  is  -symmetric mapping, 

:g X X is continuous, gX is complete. Suppose that 

the function : ( ) ( ) [0, )f g X g X   defined in 

Theorem 2.9 is a lower semi-continuous and that there exists 

a function :[0, ] [ ,1), 0 1a a     satisfying 

limsup ( ) 1
r t

r


  for each [0, )t  . Assume that for 

any ( , )x y  , there exist ( , )gu F x y and 

( , )gv F y x  satisfying  

   

 

( , ) ( , ) ( , ) ( , )

( , ( , )) ( , ( , )

d gx gu d gy gv d gx gu d gy gv

D gx F x y D gy F y x

  

 
 

such that  

     

 

, ( , ) , ( , ( , ) ( , )

( , ) ( , )

D gu F u v D gv F v u d gx gu d gy gv

d gx gu d gy gv

  



.Then, F and g have a coupled coincidence point, that is, 

there exists 
1 2( , )gz gz gz X X    such that 

1 1 2( ,z )gz F z  and 2 2 1( , )gz F z z . 

Using the concept of commuting maps and mixed g -

monotone property, Lakshmikantham and  

C
/
iric [13] established the existence of coupled coincidence 

point results to generalize the results of Bhaskar and 

lakshmikantham [2]. Hussain and Alotaibi [8] proved the 

following results by using the mixed g -monotone property 

for compatible maps F and g  in partially ordered metric 

space, where F is the multi-valued mapping.   

Theorem 2.11. [8]. Let : ( )F X X CL X  , 

:g X X  be such that  

(a) there exists (0,1)k  with 

( ( , ), ( , ) (( , ), ( , )
2

k
H F x y F u v d gx gy gu gv  

for all ( , ) ( , )gx gy gu gv , 

(b) if 1 2 1 2( ) ( ), ( ) ( )g x g x g y g y
, 

, ( 1,2)i ix y X i 
; 

then for all 
1 1 1( ) ( , )g u F x y , there exists 

2 2 2( ) ( , )g u F x y  with 1 2( ) ( )g u g u  and for all 

1 1 1( ) ( , )g v F y x , there exists 2 2 2( ) ( , )g v F y x  with

2 1( ) ( )g v g v provided, 1 1 2 2(( , ),( , )) 1d gu gv gu gv  ; 

F has the mixed g -monotone property, provided 

1 1 2 2(( , ),( , )) 1d gu gv gu gv  , 

(c) there exists 0 0,x y X
 and some  

1 0 0 1 0 0( , ), ( , )gx F x y gy F y x 
with 

0 1 0 1( ) ( ), ( ) ( )g x g x g y g y
such that

0 0 1 1(( , ),( , )) 1d gx gy gx gy k 
 with (0,1)k ; 

(d) if a non-decreasing sequence  nx x , then nx x  for 

all n and if non-increasing sequence  ny y , then 

ny y for all n and if gX is complete, then F and g

have a coupled coincidence point.                

Theorem 2.12. [8]. Let : ( )F X X CB X  , 

:g X X be such that condition (i)-(iii) of Theorem 2.11 

hold. Let X be complete, F and g be continuous and 

compatible. Then F and g have a coupled coincidence 

point. 

 

3. MAIN RESULTS   

Let ( , )  be a measurable space with a  , sigma algebra 

of subsets of  and let ( , )X d be metric space. We denote 

by 2X
the family of all subsets of X . A mapping 

: 2XT  is called  -measurable if for any open subset 



Sci.Int.(Lahore),27(2),889-899,2015 ISSN 1013-5316; CODEN: SINTE 8 891 

March-April 

U of X ,  1( ) : ( )T U w T w U      . In what 

follows, when we speak of measurability, we will mean  -

measurability. A mapping :f X X  is called a 

random operator if for any , (., )x X f x is measurable. A 

mapping : ( )T X CL X  is called multivalued 

random operator if for every , (., )x X T x is measurab- 

le. A mapping :s X is called a measurable selector of 

a measurable multifunction : 2XT  if s is measurable 

and ( ) ( )s T   for all  . A measurable mapping 

: X  is called a random fixed point of a random 

multifunction : ( )T X CL X   if 

( ) ( , ( ))T      for every  . A measurable 

mapping : X  is called a random coincidence of 

: ( )T X CL X   and :f X X   if 

( , ( )) ( , ( ))f T      for every  .  

Theorem 3.1. Let ( , , )X d  be a complete separable 

partially ordered metric space, ( , )   be a measurable 

space and let : ( ) ( )F X X CL X    is a  -

symmetric mapping, :g X X   be continuous, such 

that 

(i) (., )F v  and (., )g x  are measurable for all 

v X X   and x X  respectively, 

(ii) ( ,.)F   is continuous for all  . 

The function : ( ) [0, )f gX gX     defined by 

( , ( ( , ), ( , ))) ( ( , ), ( , ( , )))

( ( , ), ( , ( , )))

f g x g y D g x F x y

D g y F y x

    

 




 

for all , ,x y X    is lower semi-continuous and there 

exists a function :[0, ) [ ,1),a    0 1a   satisfying, 

limsup ( ) 1
r t

r


  for each [0, ).t              (1)    

Assume that for any ( ,( , ))x y  , there exist 

( , ) ( ,( , )))g u F x y   and ( , ) ( ,( , )))g v F y x   

satisfying    

( , ( ( , ) ( ( , ), ( , ))

, ( , ))) ( ( , ), ( , ))

( , ( ( , ), ( , )))

f g x d g x g u

g u d g y g v

f g x g u

   


  

  

   
   

   



(2)    

such that 

( , ( ( , ), ( , )))

( , ( ( , ), ( ( , ), ( , ))

( , ))) ( ( , ), ( , ))

f g x g u

f g x d g x g u

g u d g y g v

  

   


  

   
    

   

   (3)   

If ( )g X X  , then there exist measurable mappings 

, : X    such that  

 

( , ( )) ( ,( ( ), ( )))g F         and 

( , ( )) ( ,( ( ), ( )))g F         for all  , that 

is F and g  have a coupled random coincidence point. 

Proof. Let { : }X   be a family of measurable 

mappings. Define a function :g X R   as follows 

( , ) ( , ( , ))h x d F x                         (4) 

Since ( , )x F x  is continuous for all  , we 

conclude that ( ,.)h   is continuous for all  . Also, 

since ( , )x F x  is measurable for all x X , we 

conclude that ( ,.)h   is measurable (see Wanger [25, page 

868]) for all  . Thus ( , )h x  is the Caratheodry 

function. Therefore, if : X  is a measurable 

mapping, then ( , ( ))h     is also measurable (see 

[18]). Now, we shall construct two sequences of measurable 

mappings { }n and { }n  in  , and two sequences 

{ ( , ( ))}ng     and { ( , ( ))}ng     in X  as follows. 

Let 
0 0( ,( , ))     be arbitrary, then the 

multifunction : ( )G CB X  defined by

0 0( ) ( ,( ( ), ( )))G F       is measurable. From the 

Kuratowski and Ryll-Nardzewski [11] selector theorem, 

there are measurable selectors 1 1, : X   such that 

1 0 0( ) ( ,( ( ), ( )))F        and 

1 0 0( ) ( ,( ( ), ( )))F        for all  . Since 

1 0 0( ) ( ,( ( ), ( ))) ( )F X g X            and 

1 0 0( ) ( ,( ( ), ( )))F       , then there are 

1 1( ,( ( ), ( )))        such that 

1 1 1 1 1( , ( )) ( ), ( , ( )) ( )g g           . Thus 

1 0 0( , ( )) ( ,( ( ), ( )))g F          and 

1 0 0( , ( )) ( ,( ( ), ( )))g F        . 

 Now by (2) and (3), we have 

0 0 1

0 0 1

0 0

( , ( ( , ( )), ( ( , ( )), ( , ( )))

( , ( )))) ( ( , ( )), ( , ( )))

( , ( ( , ( )), ( , ( )))) (5)

f g d g g

g d g g

f g g

         


        

      

   
   

   



 

and  

1 1

0 0 1

0 0 1

( , ( ( , ( )), ( , ( ))))

( , ( ( , ( )), ( ( , ( )), ( , ( )))
(6)

( , ( )))) ( ( , ( )), ( , ( )))

f g g

f g d g g

g d g g

      

         


        

   
    

   

  

Since by definition of  , we have ( ( ,( , ))) 1f x y   ,for 

each ( ,( , )) ( )x y X X   , it follows from (5) and 

(6),  
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1 1

0 0 1

0 0 1

0 0

0 0

0

( , ( ( , ( )), ( , ( ))))

( , ( ( , ( )), ( ( , ( )), ( , ( )))

( , ( )))) ( ( , ( )), ( , ( )))

( , ( ( , ( )), ( , ( ( , ( )),

( , ( )))) ( , ( ))))

( ( , (

f g g

f g d g g

g d g g

f g f g

g g

d g

      

         


        

       
 

     

  

   
    

   

   
    

   

1

0 1

0 0

0 0

)), ( , ( )))

( ( , ( )), ( , ( )))

( , ( ( , ( )), ( , ( ( , ( )),
. (7)

( , ( )))) ( , ( ))))

g

d g g

f g f g

g g

  

     

       


     

 
 
 

   
    

   

 

Since F is a  -symmetric mapping and 

0 0( ,( , ))    , we have, 

0 0 0 0( ,( ( ), ( ))) ( ,( ( ), ( )))F RF           implies 

that 1 1( ,( ( ), ( )))      . Similarly, as 

1 0 0( , ( )) ( ,( ( ), ( )))g F         and 

1 0 0( , ( )) ( ,( ( ), ( )))g F         there are 

measurable selectors 2 2( , ( )), ( , ( ))g g       of 

1 1( ,( ( ), ( )))F       and 1 1( ,( ( ), ( )))F       

respectively, we have again from (2) and (3),   

1 1 2

1 1 2

1 1

( , ( ( , ( )), ( ( , ( )), ( , ( )))

( , ( )))) ( ( , ( )), ( , ( )))

( , ( ( , ( )), ( , ( ))))

f g d g g

g d g g

f g g

         


        

      

   
   

   



and 

2 2

1 1 2

1 1 2

( , ( ( , ( )), ( , ( ))))

( , ( ( , ( )), ( ( , ( )), ( , ( )))
.

( , ( )))) ( ( , ( )), ( , ( )))

f g g

f g d g g

g d g g

      

         


        

   
    

   

Hence, we get 

 

2 2

1

1 1

1

( , ( ( , ( )), ( , ( ))))

( , ( ( , ( )),
( , ( , ( )), ( , ( )))

( , ( ))))

f g g

f g
f g g

g

      

   
       

  

 
  

 

 

with 2 2( ,( ( ), ( )))      . Continuing this 

process, such that for all n , we have 

( ,( ( ), ( )))n n      ,   

1( , ( )) ( ,( ( ), ( )))n n ng F           

and  

1( , ( )) ( ,( ( ), ( )))n n ng F         . 

Again from (2) and (3), we have       

1

1

( , ( ( , ( )), ( ( , ( )), ( , ( )))

( , ( )))) ( ( , ( )), ( , ( )))

( , ( ( , ( )), ( , ( )))) (8)

n n n

n n n

n n

f g d g g

g d g g

f g g

         


        

      





   
   

   



 

and  

 

1 1( , ( ( , ( )), ( , ( ))))

( , ( ( , ( )),
( , ( , ( )), ( , ( ))) . (9)

( , ( ))))

n n

n

n n

n

f g g

f g
f g g

g

      

   
       

  

 

 
  

 

 

Now, we shall show that 

( , ( , ( )), ( , ( ))) 0n nf g g        as n . We 

shall assume that ( , ( , ( )), ( , ( ))) 0n nf g g       

for all n , since if 

( , ( , ( )), ( , ( ))) 0n nf g g        , then we get 

( ( , ( )), ( ,( ( ), ( ))) 0n n nD g F         , which 

implies that  

( , ( )) ( ,( ( ), ( )) ( ,( ( ), ( ))n n n n ng F F             

and 

( ( , ( )), ( ,( ( ), ( ))) 0n n nD g F         , 

implies that  

( , ( )) ( ,( ( ), ( )) ( ,( ( ), ( )).n n n n ng F F             

.In this case, ( ( ), ( ))n n     is a random couple-d 

coincidence point of F  and g  and the assertion of the 

theorem is proved. From (9) and ( ) 1t  , we deduced that 

{ ( ,( ( , ( )), ( , ( ))))}n nf g g        is strictly 

decreasing sequence of positive real numbers. Therefore, 

there is some 0   such that  

lim ( , ( , ( )), ( , ( )))n n
n

f g g       


 .     (10) 

Now, we will show that 0  . Suppose that this is not the 

case, by (1) and taking the limit on both sides of (9), we 

have 

( , ( , ( )), ( , ( )))

( , ( , ( )),
lim sup ,

( , ( )))n n

n

f g g
n

f g

g       

   
   

  

 
  

 

 

a contradiction. Thus,  =0, that is  

lim ( , ( , ( )), ( , ( ))) 0.n n
n

f g g      


         (11) 

Now, we have to show that { ( , ( ))}ng    and 

{ ( , ( ))}ng    are Cauchy sequences in ( )g X X  . 

Suppose that  

( , ( , ( )), ( , ( )))

( , ( , ( )),
lim sup . (12)

( , ( )))n n

n

f g g
n

f g

g       

   
 

  

 
  

 

  

Then, by (1), we have 1  . Let 1q   , then there is 

some 0n   such that 

( ( , ( , ( )), ( , ( )))) .n nf g g q               (13) 

for each 0n n . 

Thus, from (9) and (13), we have  

1 1( , ( , ( )), ( , ( )))

( , ( , ( )), ( , ( ))) (14)

n n

n n

f g g

qf g g
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for each 
0.n n  Hence, by induction 

0

1 1

1

0 0

( , ( , ( )), ( , ( )))

( ( , ( , ( )), ( , ( )))) (15)

n n

n n

f g g

q f g g

      

      

 

 


 

for each 
0.n n  Since ( ) 0t    for all 0t  , from 

(8) and (15), we have 

0

1

1

0 0

( ( , ( )), ( , ( )))

( ( , ( )), ( , ( )))

1
( ( , ( , ( )), ( , ( )))). (16)

n n

n n

n n

d g g

d g g

q f g g

     

     

      








 
 
 



 

From (16) and since 1q  , we conclude that 

{ ( , ( ))}ng     and { ( , ( ))}ng     are Cauchy 

sequences in ( )g X X  . Now, since gX is complete, 

there exist 0 0( ), ( )      such that  

0lim ( , ( )) ( , ( ))n
n

g g     


  

and 

0lim ( , ( )) ( , ( )).n
n

g g     


  

As 0( , ( ))g     and 0( , ( ))g     are measurable, then 

the functions ( ), ( )    defined by, ( )  

0( , ( ))g    and 0( ) ( , ( ))g     are measurable.  

Since by assumption f is lower semi-continuous, so from 

(11), we get 

00 ( , ( ( , ( )), ( , ( ))))

( ( , ( ), ( , ( ( ), ( ))))

( ( , ( ), ( , ( ( ), ( ))))

lim inf ( , ( , ( )), ( , ( ))

0.

n n
n

f g g

D g F

D g F

f g g

      

       

       

      












 

Hence,  

( ( , ( ), ( , ( ( ), ( ))))

( ( , ( ), ( , ( ( ), ( ))))

0,

D g F

D g F

       

       



. 

which implies that,  

( , ( )) ( ,( ( ), ( )))g F         

and  

( , ( ) ( ,( ( ), ( ))).g F         

This proves that F  and g  have a coupled random 

coincidence points.  

Theorem 3.2: Let ( , , )X d  be a complete separable 

partially ordered metric space, ( , )   be a measurable 

space and let : ( ) ( )F X X CL X    is a  -

symmetric mapping, :g X X   be continuous, such 

that 

(i) (., )F v  and (., )g x  are measurable for all v X X   

and x X  respectively, 

(ii) ( ,.)F   is continuous for all  . 

The function : ( ) [0, )f gX gX     defined by 

 ( , ( ( , ), ( , ))) (17)

( ( , ), ( , ( , ))) ( ( , ), ( , ( , )))

f g x g y

D g x F x y D g y F y x

  

    
 

for all , ,x y X    is lower semi-continuous and there 

exists a function :[0, ) [ ,1),0 1a a      satisfying 

limsup ( ) 1 (18)
r t

r


  

for each [0, ).t   

Assume that for any ( ,( , ))x y  , there exist 

( , ) ( ,( , )))g u F x y   and ( , ) ( ,( , )))g v F y x   

satisfying 

( ( ( , ), ( , )) ( ( , ), ( , )))

[ ( ( , ), ( , )) ( ( , ), ( , ))]

( ( , ), ( , ( , ))) ( ( , ), ( , ( , )))

d g x g u d g y g v

d g x g u d g y g v

D g x F x y D g y F y x

    

   

   





 

      

                                                                          (19) 

such that 

( ( , ), ( , ( , ))) ( ( , ), ( , ( , )))

( ( ( , ), ( , )) ( ( , ), ( , )))

[ ( ( , ), ( , )) ( ( , ), ( , ))]. (20)

D g u F u v D g v F v u

d g x g u d g y g v

d g x g u d g y g v

   

    

   



 



  

If ( )g X X  , then there exist measurable mappings 

, : X    such that, 

( , ( )) ( ,( ( ), ( )))g F         and 

( , ( )) ( ,( ( ), ( )))g F         for all  , that 

is, F and g  have a coupled random coincidence point. 

Proof: Replacing ( ( ,( ( , ), ( , ))))f g x g y    with 

( ( ( , ), ( , )) ( ( , ), ( , )))d g x g u d g y g v     and as in 

the proof of Theorem 3.1, we can construct sequences 

{ ( , ( ))}ng     and { ( , ( ))}ng     in ( )g X X  

such that for all n , we have 

( ,( ( ), ( )) ,n n     

1( , ( )) ( ,( ( ), ( )))n n ng F          and 

1( , ( )) ( ,( ( ), ( )))n n ng F         . Now by (19) 

1

1

1

1

( ( ( , ( )), ( , ( )))

( ( , ( )), ( , ( ))))

[ ( ( , ( )), ( , ( )))

( ( , ( )), ( , ( ))))] (21)

( ( , ( )), ( , ( ( ), ( ))))

( ( , ( )), ( , ( ( ), ( ))))

n n

n n

n n

n n

n n n

n n n

d g g

d g g

d g g

d g g

D g F

D g F

      

     

     

     

       

       

















 

and  
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1 1 1

1 1 1

1

1

[ ( ( , ( )), ( , ( ( ), ( ))))

( ( , ( )), ( , ( ( ), ( ))))]

( ( ( , ( )), ( , ( )))
(22)

( ( , ( )), ( , ( ))))

[ ( ( , ( )), ( , ( ( ), ( ))))

( ( , ( )), ( , ( ( ),

n n n

n n n

n n

n n

n n n

n n n

D g F

D g F

d g g

d g g

D g F

D g F

       

       

      

     

       

      

  

  










 ( ))))]

 

for all 0n  . Again following the lines of the proof of 

Theorem 3.1, we conclude that, 

{ ( ( , ( )), ( , ( ( ), ( ))))

( ( , ( )), ( , ( ( ), ( ))))}

n n n

n n n

D g F

D g F

       

       
 

is a strictly decreasing sequence of positive real numbers. 

Therefore, there is some 0   such that 

lim{ ( ( , ( )), ( , ( ( ), ( ))))

( ( , ( )), ( , ( ( ), ( ))))} . (23)

n n n
n

n n n

D g F

D g F

       

        



 

 

Since in our assumption there appears  

1

1

( ( , ( )), ( , ( )))

( ( , ( )), ( , ( )))

n n

n n

d g g

d g g

     


     





 
 
 

, 

we need to prove that  

1

1

( ( , ( )), ( , ( )))

( ( , ( )), ( , ( ))))

n n

n n

d g g

d g g

     

     





 
 
 

 

admits a subsequence converging to a certain  
for some 

0  . Since ( ) 0t a    for all 0t  , from (21), we 

have 

1 1( ( , ( )), ( , ( ))) ( ( , ( )), ( , ( ))))

( ( , ( )), ( , ( ( ), ( ))))1
(24)

( ( , ( )), ( , ( ( ), ( ))))

n n n n

n n n

n n n

d g g d g g

D g F

D g Fa

           

       

       

 

 
  

 

. 

From (23) and (24), we conclude that the sequence 

1

1

( ( , ( )), ( , ( )))

( ( , ( )), ( , ( ))))

n n

n n

d g g

d g g

     

     





 
 
 

 

is bounded, therefore, there is some 0  such that  

1

1

( ( , ( )), ( , ( )))
lim inf . (25)

( ( , ( )), ( , ( ))))

n n

n
n n

d g g

d g g

     


     






 
 

 

 

Since 1( , ( )) ( ,( ( ), ( )))n n ng F          and 

1( , ( )) ( ,( ( ), ( )))n n ng F         , it follows that 

1

1

( ( , ( )), ( , ( )))

( ( , ( )), ( , ( )))

( ( , ( )), ( , ( ( ), ( ))))

( ( , ( )), ( , ( ( ), ( ))))

n n

n n

n n n

n n n

d g g

d g g

D g F

D g F

     

     

       

       





 
 
 

 
  

 

 

for each 0n  . This implies that   . Now, we shall 

show that   . If we assume that 0  , then from (23) 

and (24), we have  

1

1

( ( , ( )), ( , ( )))
lim 0.

( ( , ( )), ( , ( ))))

n n

n
n n

d g g

d g g

     

     






 
 

 
 

Thus, if 0  , then   . Suppose now that 0  . 

Assume to contrary that   . Then, 0    and so 

from (23) and (25) there is a positive integer 
0n  such that 

( ( , ( )), ( , ( ( ), ( ))))

( ( , ( )), ( , ( ( ), ( ))))

4

n n n

n n n

D g F

D g F

       

       

 


 
 
 


 

  (26) 

and  

1

1

( ( , ( )), ( , ( )))

( ( , ( )), ( , ( ))))4

n n

n n

d g g

d g g

      


     





 
   

 
 

                                                                                   (27) 

for all 
0n n . Then, combining (21), (26) and (27), we get 

1

1

1 1

1 1

( ( ( , ( )), ( , ( )))

( ( , ( )), ( , ( ))))) 4

( ( ( , ( )), ( , ( ))) ( ( , ( )), ( , ( )))

( ( , ( )), ( , ( ))))) ( ( , ( )), ( , ( ))))

( ( , ( ))

n n

n n

n n n n

n n n n

n

d g g

d g g

d g g d g g

d g g d g g

D g

        


     

            

           

  





 

 

 
 

  

 
  

  


, ( , ( ( ), ( ))))

( ( , ( )), ( , ( ( ), ( ))))

4

n n

n n n

F

D g F

    

       

 


 
 
 


 

 

  for all 0n n . Hence, we get    

1

1

( ( , ( )), ( , ( )))

( ( , ( )), ( , ( ))))

3

3

n n

n n

d g g

d g g

     


     

 

 





 
 
 






         (28) 

for all 0n n . Put 
3

1.
3

h
 

 


 


 Now, form (22) and 

(28), it follows that  

1 1 1

1 1 1

( ( , ( )), ( , ( ( ), ( ))))

( ( , ( )), ( , ( ( ), ( ))))

( ( , ( )), ( , ( ( ), ( ))))

( ( , ( )), ( , ( ( ), ( ))))

n n n

n n n

n n n

n n n

D g F

D g F

D g F
h

D g F

       

       

       

       

  

  

 
 
 

 
  

 

 

for all 0n n . Since, we assume that 0   and 1h  , 

proceeding by induction and combining the above 

inequalities, it follows that 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0
0

0 0 0

( ( , ( )), ( , ( ( ), ( ))))

( ( , ( )), ( , ( ( ), ( ))))

( ( , ( )), ( , ( ( ), ( ))))

( ( , ( )), ( , ( ( ), ( ))))

n k n k n k

n k n k n k

n n nk

n n n

D g F

D g F

D g F
h

D g F

       


       

       

       



  

  

 
  

  

 
  

  



 

for a positive integer 0k , which is a contradiction to the 

assumption that    and so we must have   . Now, 

we shall show that 0  . Since 
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1

1

( ( , ( )), ( , ( ( ), ( ))))

( ( , ( )), ( , ( ( ), ( ))))

( ( , ( )), ( , ( )))
.

( ( , ( )), ( , ( ))))

n n n

n n n

n n

n n

D g F

D g F

d g g

d g g

 

       

       

     

     







 
  

 

 
  

 

 

S0, we can read (25) as 

1

1

( ( , ( )), ( , ( )))
liminf .

( ( , ( )), ( , ( ))))

n n

n
n n

d g g

d g g

     


     

 




 
 

 
 

Thus, there exists a subsequence 

1

1

( ( , ( )), ( , ( )))

( ( , ( )), ( , ( ))))

k k

k

k k

n n

n

n n

d g g

d g g

     


     





  
 

  

, 

such that 

lim .
kn

n
  


  

Now, by (180, we have  

lim sup ( ) 1.
k

nk

n
 

 


               (29) 

From (22),  

1 1 1

1 1 1

( ( , ( )), ( , ( ( ), ( ))))

( ( , ( )), ( , ( ( ), ( ))))

( ( , ( )), ( , ( ( ), ( ))))
( ) .

( ( , ( )), ( , ( ( ), ( ))))

k k k

k k k

k k k

k

k k k

n n n

n n n

n n n

n

n n n

D g F

D g F

D g F

D g F

       

       

       
 

       

  

  

 
 
  

 
  

  

 

Taking the limit as k   and using (23), we get 

1 1 1

1 1 1

( ( , ( )), ( , ( ( ), ( ))))
lim sup

( ( , ( )), ( , ( ( ), ( ))))

( ( , ( )), ( , ( ( ), ( ))))
( lim sup ( ))

( ( , ( )), ( , ( ( ), ( ))))]

k k k

k k k

k k k

k

k k k

n n n

k
n n n

n n n

n
k

n n n

D g F

D g F

D g F

D g F

       


       

       
 

       

  


  



 
  

  

 
 

 

( lim sup ( )) .
k

nk

n
 

  







 

From the last inequality, if we suppose that 0  , we get 

1 ( lim sup ( )),
k

nk

n
 

 


  

a contradiction with (29). Thus, 0  . Then from (23) and 

(24) we have 

lim sup ( ))

1.

k
nk

n
 

  






 

Once again, proceeding as in the proof of Theorem 3.1, one 

can prove that { ( , ( ))}ng    and { ( , ( ))}ng     in 

( )g X X   and that F  and g  have a coupled random 

coincidence point.  

4. Random coupled coincidence point by mixed g -

monotone property 

Definition 4.1: [13] Let ( , )X be a partially ordered set 

and :F X X X   and :g X X . We say that F  

has the mixed g -monotone property if F is monotone g -

non-decreasing in its first argument and is monotone g -

non-increasing in its second argument, that is, for any

,x y X ,   1 2 1 2, , ( ) ( )x x X g x g x  

implies 1 2( , ) ( , )F x y F x y  and 1 2,y y X ,

1 2( ) ( )g y g y  implies 1 2( , ) ( , ).F x y F x y  

Definition 4.2: [13] Let ( , )X  be a partially ordered set, 

: ( )F X X CL X   and :g X X be mappings. 

We say that the mapping F has the mixed g -monotone 

property, if for all 1 2 1 2, , ,x x y y X  with 1 2( ) ( )g x g x  

and 1 2( ) ( )g y g y , we get for all 
1 1 1( ) ( , )g u F x y , 

there exists 2 2 2( ) ( , )g u F x y  such that 1 2( ) ( )g u g u  

and for all 1 1 1( ) ( , )g v F y x , there exists 

2 2 2( ) ( , )g v F y x  such that 1 2( ) ( )g v g v . 

Lemma 4.3: [15] If , ( )A B CB X  with ( , )H A B  , 

then for each a A  there exists an element b B  such 

that ( , )d a b  . 

Lemma 4.4: [15] Let { }nA  be a sequence in ( )CB X  and 

lim ( , ) 0n
n

H A A


  for ( )A CB X . If n nx A  and 

lim ( , ) 0n
n

d x x


 , then x A . 

Let ( , )X  be a partially ordered set and d  be a metric on 

X  such that ( , )X d  is a complete metric space. We define 

the partial order on the product space X X  as:    

for ( , ),( , ) ,u v x y X X  ( , ) ( , )u v x y if and only if 

, .u x v y  The product metric on X X  is defined as:  

1 1 2 2 1 2 1 2(( , ),( , )) : ( , ) ( , )d x y x y d x x d y y   

for all , ( 1,2).i ix y X i   

For notational convenience, we use the symbol d  for the 

product metric as well as for the metric on X . 

Now, we prove the following result that provide the 

existence of a coupled random coincidence point for 

compatible maps F  and g  in partially ordered metric 

spaces, where F  is the multi-valued mapping. 

Theorem 4.5: Let ( , , )X d  be a complete separable  

partially ordered metric space, ( , )   be a measurable 

space and : ( ) ( )F X X CB X    and 

:g X X   be measurable mappings. If 

:g X X   be continuous and there exists (0,1)k  

such that 

( ( , ( , )), ( , ( , )))

(( ( , ), ( , )), ( ( , ), ( , )))
2

H F x y F u v

k
d g x g y g u g v

 

   
   (30) 

for all , , , ,x y u v X    for each 
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( ( , ), ( , )) ( ( , ), ( , ))g x g y g u g v    . Suppose that If 

1 2( , ) ( , )g x g x  , 
2 1( , ) ( , )g y g y  ,  

, ( 1,2)i ifor all x y X i  , then for all 

1 1 1( , ) ( , ( , ))g u F x y  , there exists 

2 2 2( , ) ( ,( , ))g u F x y   with 1 2( , ) ( , )g u g u   

and for all 1 1 1( , ) ( , ( , ))g v F y x  , there exists 

2 2 2( , ) ( , ( , ))g v F y x   with 
2 1( , ) ( , )g v g v   

provided 

1 1 2 2(( ( , ), ( , )),( ( , ), ( , ))) 1,d g u g v g u g v      

(i) There exist 0 0, ,x y X    and some 

1 0 0( , ) ( , ( , ))g x F x y  , 1 0 0( , ) ( , ( , ))g y F y x   

with 0 1( , ) ( , )g x g x  , 0 1( , ) ( , )g y g y   such that 

0 0 1 2(( ( , ), ( , )),( ( , ), ( , ))) 1d g x g y g x g y k       

(0,1)k ; 

(ii) If a non-decreasing sequence { }nx x , then 

nx x  for all n  and if a non-increasing sequence 

{ }ny y , then ny y  for all n . ( )g X X   is 

complete, then there exist measurable mappings 

, : X    such that  

( , ( )) ( ,( ( ), ( )))g F         

and 

( , ( )) ( ,( ( ), ( )))g F         

for all  , that is F  and g  have a coupled random 

coincidence point. 

Proof: Let { : }X    be a family of measurable 

mappings. Define a function :g X R   as follows 

( , ) ( , ( , ))h x d F x    

Since ( , )x F x  is continuous for all  , we 

conclude that ( ,.)h   is continuous for all  . Also, 

since ( , )x F x  is measurable for all x X , we 

conclude that ( ,.)h   is measurable (see Wanger [25, page 

868]) for all  . Thus ( , )h x  is the Caratheodry 

function. Therefore, if : X  is a measurable 

mapping, then ( , ( ))h     is also measurable (see 

[18]). Now, we shall construct two sequences of measurable 

mappings { }n and { }n  in  , and two sequences 

{ ( , ( ))}ng     and { ( , ( ))}ng     in X  as follows.  

Let 0 0,    such that  by (ii), there exist 

1 0 0( , ( )) ( ,( ( ), ( )))g F        , 

1 0 0( , ( )) ( ,( ( ), ( )))g F         with 

0 1( , ( )) ( , ( ))g g       and 

0 1( , ( )) ( , ( ))g g       such that 

0 0

1 1

( ( , ( )), ( , ( ))),
1 .

( ( , ( )), ( , ( )))

g g
d k

g g

     

     

 
  

 
          (31) 

Since 

0 0 1 1( ( , ( )), ( , ( ))) ( ( , ( )), ( , ( )))g g g g           

using (30) and (31), we have 

0 0

1 1

0 0

1 1

( , ( ( ), ( )))

, ( , ( ( ), ( )))

( ( , ( )), ( , ( ))),

( ( , ( )), ( , ( ))))2

(1 )
2

F
H

F

g gk
d

g g

k
k

    

    

     

     

 
 
 

 
  

 

 

           (32) 

and similarly, 

0 0

1 1

( , ( ( ), ( ))),

( , ( ( ), ( )))

(1 ).
2

F
H

F

k
k

    

    

 
 
 

 

                                  (33) 

Using (i) and Lemma (4.3), we have the existence of 

2 1 1( , ( )) ( ,( ( ), ( )))g F         and 

2 1 1( , ( )) ( ,( ( ), ( )))g F         with 

1 2( , ( )) ( , ( ))g g       and 

1 2( , ( )) ( , ( ))g g       such that 

1 2( ( , ( )), ( , ( ))) (1 )
2

k
d g g k          (34) 

and  

1 2( ( , ( )), ( , ( ))) (1 ).
2

k
d g g k         (35) 

From (34) and (35), we have 

1 1

2 2

( ( , ( )), ( , ( ))),
1 .

( ( , ( )), ( , ( )))

g g
d k

g g

     

     

 
  

 
 (36) 

Now, by (30) and (36), we have 

1 1 2 2

2

( ( , ( ( ), ( ))), ( , ( ( ), ( ))))

(1 )
2

H F F

k
k

         

 
 

and  

1 1 2 2

2

( ( , ( ( ), ( ))), ( , ( ( ), ( ))))

(1 ).
2

H F F

k
k

         

 
 

From Lemma (4.3) and (i), we have the existence of 

3 2 2( , ( )) ( ,( ( ), ( )))g F         and 

3 2 2( , ( )) ( ,( ( ), ( )))g F         with 

2 3( , ( )) ( , ( ))g g       and 
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2 3( , ( )) ( , ( ))g g       such that 

2

2 3( ( , ( )), ( , ( ))) (1 )
2

k
d g g k         

and 
2

2 3( ( , ( )), ( , ( ))) (1 ).
2

k
d g g k         

It follows that 

2 2 2

3 3

( ( , ( )), ( , ( ))),
1 .

( ( , ( )), ( , ( )))

g g
d k k

g g

     

     

 
  

 
 

Continuing in this way, we obtain 

1( , ( )) ( ,( ( ), ( )))n n ng F          and 

1( , ( )) ( ,( ( ), ( )))n n ng F          with 

1( , ( )) ( , ( ))n ng g       and 

1( , ( )) ( , ( ))n ng g       such that 

1( ( , ( )), ( , ( ))) (1 )
2

n

n n

k
d g g k         

and  

1( ( , ( )), ( , ( ))) (1 ).
2

n

n n

k
d g g k         

Thus, 

2

1 1

( ( , ( )), ( , ( ))),
1 .

( ( , ( )), ( , ( )))

n n

n n

g g
d k k

g g

     

      

 
  

 
 (37) 

Now, we prove that, for each  , { ( , ( ))}ng     and 

{ ( , ( ))}ng     are Cauchy sequences. Then, 

1

1 2

1

1 2 1

2 1

(( ( , ( )), ( , ( ))))

(( ( , ( )), ( , ( ))))

(( ( , ( )), ( , ( ))))

.... (( ( , ( )), ( , ( ))))

1
[ .... ]( )

2

1
[1 ... ]( )

2

1 1
[ ]( )

1 2

n m

n n

n n

m m

n n n m

n m n

m n
n

d g g

d g g

d g g

d g g

k
k k k k

k
k k k k

k k
k

k

     

     

     

     



 



  

 







 


    


    

 




 (1 ) .
2 2

n n
m nk k

k  

 

Since (0,1)k , 1 1m nk   . Therefore, 

(( ( , ( )), ( , ( )))) 0n md g g        as n  

implies that { ( , ( ))}ng     is a Cauchy sequence. 

Similarly, we can show that { ( , ( ))}ng     is a Cauchy 

sequence in X . Since X  is complete and 

( )g X X  , therefore ,    such that 

( , ( )) ( , ( ))ng g       and 

( , ( )) ( , ( ))ng g      . Since { ( , ( ))}ng     is a 

non-decreasing sequence and { ( , ( ))}ng     is a non-

increasing sequence and ( , ( )) ( , ( ))ng g       

and ( , ( )) ( , ( ))ng g      , then from (iii), we 

have for all 0n  , 

( , ( )) ( , ( )),
.

( , ( )) ( , ( ))

n

n

g g

g g

     

     

 
 
 

                       (38) 

                                                   

As n , from (30), we have 

( , ( ( ), ( ))),

( , ( ( ), ( )))

( ( , ( )), ( , ( ))),
0.

2 ( ( , ( )), ( , ( )))

n n

n n

F
H

F

g gk
d

g g

    

    

     

     

 
 
 

 
  

 

 

Since 1( , ( )) ( ,( ( ), ( )))n n ng F          and  

lim ( ( , ( )), ( , ( ))) 0,n
n

d g g     


  

then from Lemma (4.4), we have that 

( , ( )) ( ,( ( ), ( )))g F        . Again from (30) 

and as , n , we have 

( , ( ( ), ( ))),

( , ( ( ), ( )))

( ( , ( )), ( , ( ))),
0.

2 ( ( , ( )), ( , ( )))

n n

n n

F
H

F

g gk
d

g g

    

    

     

     

 
 
 

 
  

 

 

Since 1( , ( )) ( ,( ( ), ( )))n n ng F          and 

lim ( ( , ( )), ( , ( ))) 0n
n

d g g     


 , then from Lemma 

(4.4), we have that ( , ( )) ( ,( ( ), ( )))g F        . 

That is, F  and g  have a coupled random coincidence 

point.  

Definition 4.6: Let ( , )X d  be a separable metric space, 

( , )   be a measurable space and : ( )F X X 

( )CB X  and :g X X   be mappings. We say 

that F  and g  are compatible if  

( , ( , ( , ))),
lim 0

( , ( ( , ), ( , )))

n n

n
n n

g F x y
H

F g x g y

 

  

 
 

 
 

and  

( , ( , ( , ))),
lim 0

( , ( ( , ), ( , )))

n n

n
n n

g F y x
H

F g y g x

 

  

 
 

 
, 

whenever { }nx  and { }ny  are sequences in X , such that 

lim ( ,( , )) lim ( , )n n n
n n

F x y g x x 
 

   and 
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lim ( ,( , )) lim ( , )n n n
n n

F y x g y y 
 

   for all   

and ,x y X . 

Theorem 4.7:  Let ( , , )X d  be a complete separable 

partially ordered metric space, ( , )   be a measurable 

space and : ( ) ( )F X X CB X    and :g X

X  be measurable mappings. If F and g be continuo-us 

and compatible mappings, there exist (0,1)k such that 

( , ( , )), ( ( , ), ( , )),
)

( , ( , )) ( ( , ), ( , ))2

F x y g x g yk
H d

F u v g u g v

  

  

   
   

   
 

for all , , ,x y u v X ,   for which 

( ( , ), ( , )) ( ( , ), ( , )).g x g y g u g v     

Suppose that  

(i) If 1 2( , ) ( , )g x g x  , 2 1( , ) ( , )g y g y  , 

, ( 1,2)i ifor all x y X i  , then for all 
1( , )g u

1 1( ,( , ))F x y , there exists 2( , )g u 

2 2( , ( , ))F x y  with 1 2( , ) ( , )g u g u   and for all 

1 1 1( , ) ( , ( , ))g v F y x  , there exists 2( , )g v 

2 2( , ( , ))F y x  with 
2 1( , ) ( , )g v g v   provided 

1 1 2 2(( ( , ), ( , )),( ( , ), ( , ))) 1,d g u g v g u g v      

(ii) There exist 0 0, ,x y X    and some 

1 0 0( , ) ( , ( , ))g x F x y  , 1( , )g y  

0 0( , ( , ))F y x  with 0 1( , ) ( , )g x g x  and  

0 1( , ) ( , )g y g y   such that  

0 0 1 2(( ( , ), ( , )),( ( , ), ( , ))) 1d g x g y g x g y k      , 

where (0,1)k ; 

(iii) If a non-decreasing sequence { }nx x , then 

nx x  for all n  and if a non-increasing sequence 

{ }ny y , then ny y  for all n . 

If ( )g X X   is complete, then there exist measurable 

mappings , : X    such that 

( , ( )) ( ,( ( ), ( )))g F         and 

( , ( )) ( ,( ( ), ( )))g F         for all  , that 

is F  and g  have a coupled random coincidence point. 

Proof: As in the proof of Theorem 4.5, we obtain the 

Cauchy sequences{ ( , ( ))}ng     and { ( , ( ))}ng    . 

Since X  is complete and ( )g X X  , therefore 

,    such that ( , ( )) ( , ( ))ng g       and 

( , ( )) ( , ( ))ng g      . Since : ( )F X X 

( )CB X  and :g X X   are compatible maps, 

we have  

( , ( , ( ( ), ( )))),
lim 0

( , ( ( , ( )), ( , ( ))))

n n

n
n n

g F
H

F g g

     

      

 
 

 
 

and 

( , ( , ( ( ), ( )))),
lim 0

( , ( ( , ( )), ( , ( ))))

n n

n
n n

g F
H

F g g

     

      

 
 

 
. 

Since { ( , ( ))}ng     and { ( , ( ))}ng     are sequen-ces 

in X , such that 

1( ) lim ( , ( )) lim ( ,( ( , ( )), ( , ( ))))n n n
n n

g F g g           
 

   

                                                                                    (39)  

and  

1( ) lim ( , ( )) lim ( ,( ( , ( )), ( , ( ))))n n n
n n

g F g g           
 

   

                                                                                    (40) 

are satisfied. For all 0n  , we have 

( ( , ( )), ( , ( ( , ( )), ( , ( )))))

( ( , ( )), ( , ( , ( ( ), ( )))))

( , ( , ( ( ), ( )))),
.

( , ( ( , ( )), ( , ( ))))

n n

n n n

n n

n n

D g F g g

D g g F

g F
H

F g g

         

        

     

      



 
  

 

 

Taking the limit as n  and using the fact that F  and 

g  are continuous. We get from (39) that 

( ( , ( )), ( ,( ( , ( )), ( , ( ))))) 0D g F g g          

,which implies that, 

( , ( )) ( ,( ( , ( )), ( , ( ))))g F g g          . 

Similarly from (40), we can prove that  

( ( , ( )), ( ,( ( , ( )), ( , ( ))))) 0D g F g g          

,which implies that 

( , ( )) ( ,( ( , ( )), ( , ( ))))g F g g          . Thus 

F  and g  have a coupled random coincidence points.   
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