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ABSTRACT. In this paper a new subclass of analytic functions associated with right half of the lemniscates of  Bernoulli 
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1. INTRODUCTION 

Let A  denote the class of functions ( )f z  which are analytic in 

the open unit disk  : 1z z   � �A  and normalized by the 

conditions  0 (0) 1 0.f f     Therefore, for ( ) ,f z A  one 

has  
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   A,                         (1.1)  

while the class of normalized univalent functions will be 

denoted by .S  For two functions ( )f z  and ( )g z  analytic in 

A , we say that ( )f z  is subordinate to ( )g z , denoted by 

( ) ( ),f z g z  if there is an analytic function ( )w z  with 

( )w z z  such that      .f z g w z  If ( )g z  is univalent 

in A , then ( ) ( ),f z g z  if and only if    0 0f g  and 

    .f gA A  

In 1996, Sokol and Stankiewicz [1] intoduced a class SL of 
Sokol-Stankiewicz starlike functions defined by 
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Geometrically, a function  f z SL if    zf z f z  is in 

the interior of the right half of the lemniscates of Bernoulli 

   
22 2 2 2

2 0.x y x y     Alternatively, we can write 

 f z SL  if and only if 
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For detail of this class, we refer the work of Sokol [2-4], Raza 
and Malik [5], Halim and Omar [6] and Ali etal.[7]. 
Utilizing the above concepts we now introduce a subclass 

 , , RS  , 0    with 0 1,     of analytic 

functions  as 
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The geometrical interpretation of a function ( )f z  belongs to 

 , RS is such that     f z z f z      lies in 

the region bounded by the right half of the lemniscates of 

Bernouli given by the relation 
2

1 1.w    It can easily be seen 

that  ( ) ,f z  RS if it satisfies 
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 A   (1.2)  

The qth  Hankel determinant   ,  1,  1,qH n q n   for a 

function ( )f z A  is studied by Noonan and Thomas [8] as:  
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In literature many authors have studied the determinant 

 qH n . For example, Arif et al. [9,10] studied the qth  

Hankel determinant for some subclasses of analytic functions. 
Hankel determinant of exponential ploynomials is obtained by 
Ehrenborg in [11]. The Hankel transform of an integer 
sequence and some of its properties were discussed by Layman 
[12]. It is well known that the Fekete-Szego functional 

2
3 2| |a a  is  2 1 .H  Fekete-Szego then further generalized 

the estimate 
2

3 2| |a a  with    real and ( ) .f z S  

Moreover, we also know that the functional 
2

2 4 3| |a a a  is 

2 (2).H  Janteng, Halim and Darus [13] have considered the 

functional 
2

2 4 3| |a a a  and found a sharp bound for the 

function ( )f z  in the subclass RT  of ,S
 

consisting of 

functions whose derivative has a positive real part studied by 
Mac Gregor [14]. In their work, they have shown that if  
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  ,f z RT  then 
2

2 4 3| | 4 9 .a a a   The sharp upper bound 

of the second Hankel determinant for the familiar classes of 
starlike and covex functions were studied in [15], that is, for 

*
( )f z S  and ( ) ,f z C  the authors obtained 

2
2 4 3| | 1.a a a   

and 
2

2 4 3| | 1 8 .a a a   respectively. Recently in 2010,  

Babalola [16] considered the third Hankel determinant 3 (1)H  

and obtained the upper bound of the well-known classes of 
bounded-turning, starlike and convex functions.                                                                                                                                                                                                  
In the present investigation, we study the upper bound of 

3 (1)H
 

for a subclass  , RS  of analytic functions 

associated with lemniscate of Bernouli by using Toeplitz 
determinants. 
For our main results we need the following lemmas. 

Lemma 1.1 [17] .  If   2
1 21 ,p z c z c z P      then  
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when 0   or 0  , equality holds if and only if ( )p z  is 

  
1

1 1z z


   or one of its rotations. If  0 1,   then 

equality holds if and only if  p z  is   
12 2

1 1z z


   or one 

of its rotations. If 0,   then equality holds if and only if  
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or one of its rotations. While for 1,   equality holds if and 

only if ( )p z
 
is the reciprocal of one of the functions such that 

equality holds in the case of 0.   Although the above upper 

bound is sharp, it can be improved as follows when 0 1,   
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Lemma 1.2 [17].   If   2
1 21 ,p z c z c z P    

 
then for 

complex number ,  

 2
2 1 2 max 1; 2 1  c c     

and the result is sharp for the functions given by 

    2 2 1
1 1p z z z


    or       

1
1 1 .p z z z


    

 

Lemma 1.3 [18].   If   2
1 21 ,p z c z c z P    

  
then 
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for some ,   such that 1,  1.x z x z 
      

 

2. MAIN RESULTS 

Theorem 2.1. Let  ( ) ,f z  RS  and of the form  (1.1) . 

Then 
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Furthermore  
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These results are sharp. 
 

Proof. If  ( ) ,f z  RS , then, using  (1.2),  it follows that  
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 A,        2.1  

where  ( ) 1z z    .  Let us define a function 
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It is clear that ( ) .p z P  This implies that 
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From (2.1), we have 
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Now 
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2 ( ) 1 1 5
1
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1 5 13
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4 16 128
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Similarly, 
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Equating the coefficients of  
2 3 4

,  ,   and z z z z , we obtain 
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From  (2.2)  and  (2.3) , we obtain 
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Now by using Lemma 1.1, we ge the required result. 

Theorem 2.2. Let  ( ) ,f z  RS and of the form (1.1). 

Then for ,   
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This result is sharp. 
Proof. Since 
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and therefore by using Lemma 1.2 with  
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we get the required result.  
 
This result is sharp for the functions 
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For 1,    we have  2 1 .H   

Corollary 2.1. Let  ( ) ,f z  RS  and of the form (1.1). 

Then 

 
2

3 2 .
2 3

a a
 

 


 


 

This result is sharp. 
 

Theorem 2.3. Let  ( ) ,f z  RS
 
and of the form (1.1). 

Then   
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This result is sharp. 
Proof. From (2.2), (2.3) and (2.4), we can write 
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Putting the values of 2c  and 3c
 

from Lemma 1.3, and 

assuming that 0c   where   1 0, 2 ,c c    we get 
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Using triangle inequality and taking ,x   we have 
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Differentiating with respect to ,  we get 
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It is clear that  , 0F c     , which shows that  ,F c   is 

an increasing function on the interval  0,1 . This implies that 
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maximum value occurs at 1.   Therefore    ,1F c N c   

(say).  Now 
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Differentiate again with respect to  c , we have 
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Now    0N c    for  [0,2],c   so maximum value occurs at  

0.c   Thus we obtain 
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This result is sharp for the functions 
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Theorem 2.4. Let  ( ) ,f z  RS  and of the form (1.1). 

Then 
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This result is sharp. 
Proof. By similar arguments as used in the last theorem, we get 
the required result. 
 
Using similar method as in [3], we get the following Lemma. 

Theorem 2.5. Let  ( ) ,f z  RS  and of the form (1.1). 

Then  
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These estimations are sharp. 
Proof. From (1.1), we can write 
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Comparing the coefficients of like powers and then simple 
computation gives the required result. 

Theorem 2.6. Let  ( ) ,f z  RS  and of the form (1.1). 

Then 
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Proof: Since  

   2 2
3 3 2 4 3 4 2 3 4 5 1 3 21 .H a a a a a a a a a a a a       

By using Corollary 2.1, Theorem 2.3, Theorem 2.4 and 
Theorem 2.5, we obtain the required result. 
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