UPPER BOUND OF A THIRD HANKEL DETERMINANT FOR A SUBCLASS OF ANALYTIC FUNCTIONS

Muhammad Arif ${ }^{1}$, Mohsan Raza ${ }^{2}$, Suhail Khan ${ }^{3}$ and Muhammad Ayaz ${ }^{1}$
${ }^{1}$ Department of Mathematics, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
${ }^{2}$ Department of Mathematics, G.C. University Faisal Abad, Punjob, Pakistan
${ }^{3}$ Department of Mathematics, University of Peshawar, Khyber Pakhtunkhwa, Pakistan marifmaths@hotmail.com (M. Arif), mohsan976@yahoo.com(M.Raza), suhail_74pk@yahoo.com(S. Khan), mayazmath@awkum.edu.pk (M. Ayaz)

ABSTRACT. In this paper a new subclass of analytic functions associated with right half of the lemniscates of Bernoulli $\left(x^{2}+y^{2}\right)^{2}-2\left(x^{2}-y^{2}\right)=0$ has been introduced. An upper bound of the third Hankel determinant is determined for this class.
Keywords: Analytic functions, lemniscates of Bernoulli, Hankel determinants.
2010 Mathematics Subject Classification: 30C45, 30C10, 47B38.

1. INTRODUCTION

Let A denote the class of functions $f(z)$ which are analytic in the open unit disk $\mathfrak{A}=\{z \in \mathbb{C}:|z|<1\}$ and normalized by the conditions $f(0)=f^{\prime}(0)-1=0$. Therefore, for $f(z) \in A$, one has

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, z \in \mathfrak{A} \tag{1.1}
\end{equation*}
$$

while the class of normalized univalent functions will be denoted by S. For two functions $f(z)$ and $g(z)$ analytic in \mathfrak{A}, we say that $f(z)$ is subordinate to $g(z)$, denoted by $f(z) \prec g(z)$, if there is an analytic function $w(z)$ with $|w(z)| \leq|z|$ such that $f(z)=g(w(z))$. If $g(z)$ is univalent in \mathfrak{A}, then $f(z) \prec g(z)$, if and only if $f(0)=g(0)$ and

$$
f(\mathfrak{A}) \subseteq g(\mathfrak{A})
$$

In 1996, Sokol and Stankiewicz [1] intoduced a class $S \mathcal{L}$ of Sokol-Stankiewicz starlike functions defined by

$$
\left|\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{2}-1\right|<1, \quad z \in \mathfrak{A}
$$

Geometrically, a function $f(z) \in S \mathcal{L}$ if $z f^{\prime}(z) / f(z)$ is in the interior of the right half of the lemniscates of Bernoulli $\left(x^{2}+y^{2}\right)^{2}-2\left(x^{2}-y^{2}\right)=0$. Alternatively, we can write $f(z) \in S \mathcal{L}$ if and only if

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \sqrt{1+z}, \quad z \in \mathfrak{A} .
$$

For detail of this class, we refer the work of Sokol [2-4], Raza and Malik [5], Halim and Omar [6] and Ali etal.[7].
Utilizing the above concepts we now introduce a subclass $\mathcal{R S}(\alpha, \beta), \alpha, \beta>0 \quad$ with $0<\alpha+\beta \leq 1, \quad$ of analytic functions as

$$
\mathcal{R S}(\alpha, \beta)=\left\{f(z) \in A:\left|\left(\frac{\alpha}{\alpha+\beta} \frac{f(z)}{z}+\frac{\beta}{\alpha+\beta} f^{\prime}(z)\right)^{2}-1\right|<1, z \in \mathfrak{A}\right\} .
$$

The geometrical interpretation of a function $f(z)$ belongs to $\mathcal{R S}(\alpha, \beta)$ is such that $\left(\alpha f(z) / z+\beta f^{\prime}(z)\right) / \alpha+\beta$ lies in the region bounded by the right half of the lemniscates of Bernouli given by the relation $\left|w^{2}-1\right|<1$. It can easily be seen that $f(z) \in \mathcal{R S}(\alpha, \beta)$ if it satisfies

$$
\begin{equation*}
\frac{\alpha}{\alpha+\beta} \frac{f(z)}{z}+\frac{\beta}{\alpha+\beta} f^{\prime}(z) \prec \sqrt{1+z}, \quad z \in \mathfrak{A} \tag{1.2}
\end{equation*}
$$

The qth Hankel determinant $H_{q}(n), q \geq 1, n \geq 1$, for a function $f(z) \in A$ is studied by Noonan and Thomas [8] as:

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \cdots & a_{n+q-1} \\
a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n+q-1} & a_{n+q} & \cdots & a_{n+2 q-2}
\end{array}\right| .
$$

In literature many authors have studied the determinant $H_{q}(n)$. For example, Arif et al. $[9,10]$ studied the $q t h$ Hankel determinant for some subclasses of analytic functions. Hankel determinant of exponential ploynomials is obtained by Ehrenborg in [11]. The Hankel transform of an integer sequence and some of its properties were discussed by Layman [12]. It is well known that the Fekete-Szego functional $\left|a_{3}-a_{2}^{2}\right|$ is $H_{2}(1)$. Fekete-Szego then further generalized the estimate $\left|a_{3}-\lambda a_{2}^{2}\right|$ with λ real and $f(z) \in S$. Moreover, we also know that the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ is H_{2} (2). Janteng, Halim and Darus [13] have considered the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ and found a sharp bound for the function $f(z)$ in the subclass $\mathcal{R T}$ of S, consisting of functions whose derivative has a positive real part studied by Mac Gregor [14]. In their work, they have shown that if
$f(z) \in \mathcal{R T}$, then $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 4 / 9$. The sharp upper bound of the second Hankel determinant for the familiar classes of starlike and covex functions were studied in [15], that is, for $f(z) \in S^{*}$ and $f(z) \in C$, the authors obtained $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 1$. and $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 1 / 8$. respectively. Recently in 2010, Babalola [16] considered the third Hankel determinant $H_{3}(1)$ and obtained the upper bound of the well-known classes of bounded-turning, starlike and convex functions. In the present investigation, we study the upper bound of $H_{3}(1)$ for a subclass $\mathcal{R S}(\alpha, \beta)$ of analytic functions associated with lemniscate of Bernouli by using Toeplitz determinants.
For our main results we need the following lemmas.
Lemma 1.1 [17]. If $p(z)=1+c_{1} z+c_{2} z^{2}+\cdots \in P$, then

$$
\left|c_{2}-v a_{1}^{2}\right| \leq\left\{\begin{array}{cc}
-4 v+2 & (v \leq 0) \\
2 & (0 \leq v \leq 1) \\
4 v-2 & (v \geq 1)
\end{array}\right.
$$

when $v<0$ or $v>0$, equality holds if and only if $p(z)$ is $(1+z)(1-z)^{-1}$ or one of its rotations. If $0<v<1$, then equality holds if and only if $p(z)$ is $\left(1+z^{2}\right)\left(1-z^{2}\right)^{-1}$ or one of its rotations. If $v=0$, then equality holds if and only if

$$
p(z)=\left(\frac{1+\xi}{2}\right)\left(\frac{1+z}{1-z}\right)-\left(\frac{1-\xi}{2}\right)\left(\frac{1-z}{1+z}\right), \quad 0 \leq \xi \leq 1
$$

or one of its rotations. While for $v=1$, equality holds if and only if $p(z)$ is the reciprocal of one of the functions such that equality holds in the case of $v=0$. Although the above upper bound is sharp, it can be improved as follows when $0<v<1$,

$$
\begin{aligned}
& \left|c_{2}-v c_{1}^{2}\right|+v\left|c_{1}\right|^{2} \leq 2,0<v \leq \frac{1}{2}, \\
& \left|c_{2}-v c_{1}^{2}\right|+(1-v)\left|c_{1}\right|^{2} \leq 2, \quad \frac{1}{2}<v \leq 1 .
\end{aligned}
$$

Lemma 1.2 [17]. If $p(z)=1+c_{1} z+c_{2} z^{2}+\cdots \in P$, then for complex number v,

$$
\left|c_{2}-v c_{1}^{2}\right| \leq 2 \max \{1 ;|2 v-1|\}
$$

and the result is sharp for the functions given by

$$
p(z)=\left(1+z^{2}\right)\left(1-z^{2}\right)^{-1} \text { or } p(z)=(1+z)(1-z)^{-1}
$$

Lemma 1.3 [18]. If $p(z)=1+c_{1} z+c_{2} z^{2}+\cdots \in P$, then $2 c_{2}=c_{1}^{2}+x\left(4-c_{1}^{2}\right)$,
$4 c_{3}=c_{1}^{3}+2\left(4-c_{1}^{2}\right) c_{1} x-\left(4-c_{1}^{2}\right) c_{1} x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z$
for some x, z such that $|x| \leq 1,|z| \leq 1$.
2. MAIN RESULTS

Theorem 2.1. Let $f(z) \in \mathcal{R} S(\alpha, \beta)$ and of the form (1.1). Then

$$
\left|a_{3}-\lambda a_{2}^{2}\right| \leq\left\{\begin{array}{l}
-\frac{(\alpha+\beta)}{8}\left[\frac{1}{(\alpha+3 \beta)}+\frac{2 \lambda(\alpha+\beta)}{(\alpha+2 \beta)^{2}}\right] ; \text { if } \lambda<\frac{-5(\alpha+2 \beta)^{2}}{2(\alpha+3 \beta)(\alpha+\beta)}, \\
\frac{(\alpha+\beta)}{2(\alpha+3 \beta)} ; \text { if }-\frac{5(\alpha+2 \beta)^{2}}{2(\alpha+3 \beta)(\alpha+\beta)} \leq \lambda \leq \frac{3(\alpha+2 \beta)^{2}}{2(\alpha+3 \beta)(\alpha+\beta)}, \\
\frac{(\alpha+\beta)}{8}\left[\frac{1}{(\alpha+3 \beta)}+\frac{2 \lambda(\alpha+\beta)}{(\alpha+2 \beta)^{2}}\right] ; \text { if } \lambda>\frac{3(\alpha+2 \beta)^{2}}{2(\alpha+3 \beta)(\alpha+\beta)}
\end{array}\right.
$$

Furthermore

$$
\left|a_{3}-\lambda a_{2}^{2}\right|+\left(\lambda+\frac{5(\alpha+2 \beta)^{2}}{2(\alpha+3 \beta)(\alpha+\beta)}\right)\left|a_{2}\right|^{2} \leq \frac{(\alpha+\beta)}{2(\alpha+3 \beta)}
$$

for

$$
-\frac{5(\alpha+2 \beta)^{2}}{2(\alpha+3 \beta)(\alpha+\beta)}<\lambda \leq-\frac{(\alpha+2 \beta)^{2}}{2(\alpha+3 \beta)(\alpha+\beta)}
$$

and

$$
\left|a_{3}-\lambda a_{2}^{2}\right|+\left(\frac{3(\alpha+2 \beta)^{2}}{2(\alpha+3 \beta)(\alpha+\beta)}-\lambda\right)\left|a_{2}\right|^{2} \leq \frac{(\alpha+\beta)}{2(\alpha+3 \beta)}
$$

for

$$
-\frac{(\alpha+2 \beta)^{2}}{2(\alpha+3 \beta)(\alpha+\beta)}<\lambda \leq \frac{3(\alpha+2 \beta)^{2}}{2(\alpha+3 \beta)(\alpha+\beta)} .
$$

These results are sharp.
Proof. If $f(z) \in \mathcal{R} S(\alpha, \beta)$, then, using (1.2), it follows that

$$
\begin{equation*}
\frac{\alpha}{\alpha+\beta} \frac{f(z)}{z}+\frac{\beta}{\alpha+\beta} f^{\prime}(z) \prec \Phi(z), \quad z \in \mathfrak{A}, \tag{2.1}
\end{equation*}
$$

where $\Phi(z)=\sqrt{1+z}$. Let us define a function

$$
p(z)=\frac{1+w(z)}{1-w(z)}=1+c_{1} z+c_{2} z^{2}+\cdots .
$$

It is clear that $p(z) \in P$. This implies that

$$
w(z)=\frac{p(z)-1}{p(z)+1} .
$$

From (2.1), we have

$$
\frac{\alpha}{\alpha+\beta} \frac{f(z)}{z}+\frac{\beta}{\alpha+\beta} f^{\prime}(z)=\Phi(w(z)),
$$

with

$$
\Phi(w(z))=\sqrt{\frac{2 p(z)}{p(z)+1}} .
$$

Now

$$
\begin{aligned}
\sqrt{\frac{2 p(z)}{p(z)+1}}=1+ & \frac{1}{4} c_{1} z+\left(\frac{1}{4} c_{2}-\frac{5}{32} c_{1}^{2}\right) z^{2} \\
& +\left(\frac{1}{4} c_{3}-\frac{5}{16} c_{1} c_{2}+\frac{13}{128} c_{1}^{3}\right) z^{3}+\cdots .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\frac{\alpha}{\alpha+\beta} \frac{f(z)}{z}+\frac{\beta}{\alpha+\beta} & f^{\prime}(z)=1+\frac{(\alpha+2 \beta) a_{2}}{\alpha+\beta} z+ \\
& +\frac{(\alpha+3 \beta) a_{3}}{\alpha+\beta} z^{2}+\frac{(\alpha+4 \beta) a_{4}}{\alpha+\beta} z^{3}+\cdots .
\end{aligned}
$$

Equating the coefficients of z, z^{2}, z^{3} and z^{4}, we obtain

$$
\begin{equation*}
a_{2}=\frac{\alpha+\beta}{4(\alpha+2 \beta)} c_{1} \tag{2.2}
\end{equation*}
$$

$a_{3}=\frac{\alpha+\beta}{4(\alpha+3 \beta)} c_{2}-\frac{5(\alpha+\beta)}{32(\alpha+3 \beta)} c_{1}^{2}$
$a_{4}=\frac{\alpha+\beta}{4(\alpha+4 \beta)} c_{3}-\frac{5(\alpha+\beta)}{16(\alpha+4 \beta)} c_{1} c_{2}+\frac{13(\alpha+\beta)}{128(\alpha+4 \beta)} c_{1}^{3}$
From (2.2) and (2.3), we obtain

$$
\left|a_{3}-\lambda a_{2}^{2}\right|=\frac{\alpha+\beta}{4(\alpha+3 \beta)}\left|c_{2}-\frac{1}{8}\left(5+\frac{2 \lambda(\alpha+3 \beta)(\alpha+\beta)}{(\alpha+2 \beta)^{2}}\right) c_{1}^{2}\right| .
$$

Now by using Lemma 1.1, we ge the required result.
Theorem 2.2. Let $f(z) \in \mathcal{R} S(\alpha, \beta)$ and of the form (1.1).
Then for $\lambda \in \mathbb{C}$,

$$
\left|a_{3}-\lambda a_{2}^{2}\right| \leq \frac{(\alpha+\beta)}{2(\alpha+3 \beta)} \max \left\{1, \left.\frac{(\alpha+2 \beta)^{2}+2 \lambda(\alpha+3 \beta)(\alpha+\beta)}{4(\alpha+2 \beta)^{2}} \right\rvert\,\right\} .
$$

This result is sharp.
Proof. Since
$\left|a_{3}-\lambda a_{2}^{2}\right|=\frac{\alpha+\beta}{4(\alpha+3 \beta)}\left|c_{2}-\frac{1}{8}\left(5+\frac{2 \lambda(\alpha+3 \beta)(\alpha+\beta)}{(\alpha+2 \beta)^{2}}\right) c_{1}^{2}\right|$,
and therefore by using Lemma 1.2 with

$$
v=\frac{1}{8}\left(5+\frac{2 \lambda(\alpha+3 \beta)(\alpha+\beta)}{(\alpha+2 \beta)^{2}}\right)
$$

we get the required result.
This result is sharp for the functions

$$
\frac{\alpha}{\alpha+\beta} \frac{f(z)}{z}+\frac{\beta}{\alpha+\beta} f^{\prime}(z)=\sqrt{1+z}
$$

or

$$
\frac{\alpha}{\alpha+\beta} \frac{f(z)}{z}+\frac{\beta}{\alpha+\beta} f^{\prime}(z)=\sqrt{1+z^{2}} .
$$

For $\lambda=1$, we have $H_{2}(1)$.
Corollary 2.1. Let $f(z) \in \mathcal{R} S(\alpha, \beta)$ and of the form (1.1). Then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{\alpha+\beta}{2(\alpha+3 \beta)}
$$

This result is sharp.
Theorem 2.3. Let $f(z) \in \mathcal{R} S(\alpha, \beta)$ and of the form (1.1). Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{(\alpha+\beta)^{2}}{4(\alpha+3 \beta)^{2}}
$$

This result is sharp.
Proof. From (2.2), (2.3) and (2.4), we can write
$a_{2} a_{4}-a_{3}^{2}=\frac{(\alpha+\beta)^{2}}{1024}\left[-\frac{\left(5 c_{1}^{2}-8 c_{2}\right)^{2}}{(\alpha+3 \beta)^{2}}+\frac{2 c_{2}\left(13 c_{1}^{3}-40 c_{1} c_{2}+32 c_{3}\right)}{(\alpha+2 \beta)(\alpha+4 \beta)}\right]$.
Putting the values of c_{2} and c_{3} from Lemma 1.3, and assuming that $c>0$ where $c_{1}=c \in[0,2]$, we get

$$
\begin{aligned}
& \left.\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{(\alpha+\beta)^{2}}{1024} \right\rvert\,(8 A-B) c^{4}-8(4 A-B)\left(4-c^{2}\right) c^{2} x+ \\
& \quad\left(64 A c^{2}+16 B\left(4-c^{2}\right)\right)\left(4-c^{2}\right) x^{2}+128 A c\left(4-c^{2}\right)\left(1-|x|^{2}\right) z \mid
\end{aligned}
$$

with

$$
4 A=\frac{1}{(\alpha+2 \beta)(\alpha+4 \beta)} \text { and } B=\frac{1}{(\alpha+3 \beta)^{2}}
$$

Using triangle inequality and taking $|x|=\rho$, we have

$$
\begin{aligned}
& \left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{(\alpha+\beta)^{2}}{1024}\left[(8 A-B) c^{4}+8(4 A-B)\left(4-c^{2}\right) c^{2} \rho+\right. \\
& + \\
& \left.+\left(64 A c^{2}+16 B\left(4-c^{2}\right)\right)\left(4-c^{2}\right) \rho^{2}+128 A c\left(4-c^{2}\right)\left(1-\rho^{2}\right)\right] \\
& \\
& \quad=F(c, \rho), \text { (say) }
\end{aligned}
$$

Differentiating with respect to ρ, we get

$$
\begin{aligned}
\frac{\partial F(c, \rho)}{\partial \rho}=\frac{(\alpha+\beta)^{2}}{1024}[& 8(4 A-B)\left(4-c^{2}\right) c^{2}-256 A c\left(4-c^{2}\right) \rho+ \\
& \left.+2\left(64 A c^{2}+16 B\left(4-c^{2}\right)\right)\left(4-c^{2}\right) \rho\right]
\end{aligned}
$$

It is clear that $\partial F(c, \rho) / \partial \rho>0$, which shows that $F(c, \rho)$ is an increasing function on the interval $[0,1]$. This implies that
maximum value occurs at $\rho=1$. Therefore $F(c, 1)=N(c)$ or, equivalently (say). Now

$$
\begin{array}{r}
N(c)=\frac{(\alpha+\beta)^{2}}{1024}\left[8(4 A-B)\left(4-c^{2}\right) c^{2}-256 A c\left(4-c^{2}\right)+\right. \\
\left.2\left(64 A c^{2}+16 B\left(4-c^{2}\right)\right)\left(4-c^{2}\right)\right]
\end{array}
$$

Differentiate again with respect to c, we have

$$
\begin{aligned}
& N^{\prime}(c)=\frac{(\alpha+\beta)^{2}}{1024}\left[8(4 A-B)\left(8 c-4 c^{2}\right)-256 A\left(4-3 c^{2}\right)+\right. \\
& \left.\quad+2(128 A c+16 B(-2 c))\left(4-c^{2}\right)-4\left(64 A c^{2}+16 B\left(4-c^{2}\right)\right) c\right] .
\end{aligned}
$$

Now $N^{\prime}(c)<0$ for $c \in[0,2]$, so maximum value occurs at $c=0$. Thus we obtain

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{(\alpha+\beta)^{2}}{4(\alpha+3 \beta)^{2}}
$$

This result is sharp for the functions

$$
\frac{\alpha}{\alpha+\beta} \frac{f(z)}{z}+\frac{\beta}{\alpha+\beta} f^{\prime}(z)=\sqrt{1+z}
$$

or

$$
\frac{\alpha}{\alpha+\beta} \frac{f(z)}{z}+\frac{\beta}{\alpha+\beta} f^{\prime}(z)=\sqrt{1+z^{2}} .
$$

Theorem 2.4. Let $f(z) \in \mathcal{R S}(\alpha, \beta)$ and of the form (1.1). Then

$$
\left|a_{2} a_{3}-a_{4}\right| \leq \frac{(\alpha+\beta)}{2(\alpha+4 \beta)}
$$

This result is sharp.
Proof. By similar arguments as used in the last theorem, we get the required result.

Using similar method as in [3], we get the following Lemma.
Theorem 2.5. Let $f(z) \in \mathcal{R S}(\alpha, \beta)$ and of the form (1.1). Then

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{(\alpha+\beta)}{2(\alpha+2 \beta)}, \quad\left|a_{3}\right| \leq \frac{5(\alpha+\beta)}{8(\alpha+3 \beta)} \\
& \left|a_{4}\right| \leq \frac{13(\alpha+\beta)}{16(\alpha+4 \beta)}, \quad\left|a_{5}\right| \leq \frac{29(\alpha+\beta)}{32(\alpha+5 \beta)}
\end{aligned}
$$

These estimations are sharp.
Proof. From (1.1), we can write

$$
\left(\frac{\alpha}{\alpha+\beta} \frac{f(z)}{z}+\frac{\beta}{\alpha+\beta} f^{\prime}(z)\right)^{2}=1+w(z)
$$

Comparing the coefficients of like powers and then simple computation gives the required result.
Theorem 2.6. Let $f(z) \in \mathcal{R S}(\alpha, \beta)$ and of the form (1.1).

$$
\left(1+\sum_{n=2}^{\infty} \frac{(\alpha+n \beta)}{(\alpha+\beta)} a_{n} z^{n-1}\right)^{2}=1+\sum_{n=1}^{\infty} d_{n} z^{n}
$$

Then

$$
\left|H_{3}(1)\right| \leq \frac{(\alpha+\beta)^{2}}{32}\left[\frac{5(\alpha+\beta)}{(\alpha+3 \beta)^{3}}+\frac{13}{(\alpha+4 \beta)^{3}}+\frac{29}{2(\alpha+3 \beta)(\alpha+5 \beta)}\right]
$$

Proof: Since

$$
\left|H_{3}(1)\right| \leq\left|a_{3}\right|\left|\left(a_{2} a_{4}-a_{3}^{2}\right)\right|+\left|a_{4}\right|\left|a_{2} a_{3}-a_{4}\right|+\left|a_{5}\right|\left|a_{1} a_{3}-a_{2}^{2}\right| .
$$

By using Corollary 2.1, Theorem 2.3, Theorem 2.4 and Theorem 2.5, we obtain the required result.

REFERENCES

[1]. J. Sokól, J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zesz. Nauk. Politech. Rzeszowskiej Mat. 19(1996), 101-105.
[2]. J. Sokól, Radius problem in the class $S \mathcal{L}$, Applied Mathematics and Computation, 214(2009), 569-573.
[3]. J. Sokól, Coefficient estimates in a class of strongly starlike functions, Kyungpook Math Journal, 49(2009), 349-353.
[4]. J. Sokól, On application of certain sufficient condition for starlikeness, Journal Math. Applications, 30(2008), 40-53.
[5]. M. Raza, S. N. Malik, Upper bound of the third Hankel determinant for a class of analytic functions related with with the lemniscate of Bernoulli, Journal of Inequality and Applications, (2013), doi:10.1186/1029-242X-2013-412.
[6]. S. A. Halim, R. Omar, Applications of certain functions associated with lemniscate Bernoulli, J. Indones. Math. Soc., 18(2)(2012), 93-99.
[7]. R. M. Ali, N. E. Chu, V. Ravichandran, S. S Kumar, First order differential subordination for functions associated with the lemniscate of Bernoulli, Taiwanese Journal of Mathematics, 16(3)(2012), 1017-1026.
[8]. J. W. Noonan, D. K. Thomas, On second Hankel determinant of a really mean p -valent functions, Trans. Amer. Math. Soc., 223(1976)(2), 337-346.
[9]. M. Arif, K. I. Noor, M. Raza, Hankel determinant problem of a subclass of analytic functions, J. Inequality Applications, (2012), doi:10.1186/1029-242X-2012-22.
[10]. M. Arif, K. I. Noor, M. Raza, W. Haq, Some properties of a generalized class of analytic functions related with Janowski functions, Abstract and Applied Analysis, 2012, article ID 279843.
[11]. R. Ehrenborg, The Hankel determinant of exponential polynomials, Amer. Math. Monthly, 107(2000)(6), 557-560.
[12]. J. W. Layman, The Hankel transform and some of its properties, J. Integer seq., 4(2001)(1), 1-11.
[13]. A. Janteng, S. A. Halim, M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math., 7(2006)(2), 1-5.
[14]. T. H. Mac Gregor, Functions whose derivative have a positive real part, Trans. Amer. Math. Soc., 104(1962)(31), 532-537.
[15]. A. Janteng, S. A. Halim, M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal. 1(2007)(13), 619-625.
[16]. K. O. Babalola, On $H_{3}(1)$ Hankel determinant for some classes of univalent functions, Inequal. Theory Appl., 6(2007), 1-7.
[17]. W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In. Li, Z, Ren, F, Yang, L, Zhang, S (eds.) Proceeding of the conference on Complex Analysis (Tianjin, 1992), 157169. Int. Press, Cambridge (1994).
[18]. U. Grenander, G. Szego, Toeplitz forms and their applications, University of California Press, Berkeley (1958).

