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ABSTRACT: The failure processes can be modeled using Nakagami distribution with a reasonable flexibility.  The data 

regarding attenuation of wireless signals, traversing multiple paths, deriving unit hydrographs in hydrology, medical imaging 

studies etc can be modeled under Nakagami distribution. In this paper, the scale parameter of the Nakagami distribution has 

been estimated under Bayesian inference using left censored samples. As the Bayes estimators cannot be obtained in the closed 

form; we have used mathematica software to obtain the numerical estimates. It can be concluded that the performance of the 

PLF and inverse gamma prior is better to estimate the scale parameter of the distribution. 

 

1. INTRODUCTION 
Nakagami distribution can be considered as a flexible life 

time distribution. It was primarily proposed for modeling the 

fading of radio signals. Although, the model may also offer a 

good fit to some failure time data. It has been used to model 

attenuation of wireless signals traversing multiple paths, 

fading of radio signals, data regarding communicational 

engineering, high-frequency seismogram envelopes. The 

distribution may also be employed to model failure times of a 

variety of products (and electrical components) such as ball 

bearing, vacuum tubes, electrical insulation. It is also widely 

considered in biomedical fields, such as to model the time to 

the occurrence of tumors and appearance of lung cancer. This 

distribution is extensively used in reliability theory, reliability 

engineering and to model the constant hazard rate portion 

because of its memory less property. Moreover, it is very 

convenient because it is so simple to add failure rates in a 

reliability model. 

1.1  Probability Density Function of Nakagami 

Distribution 

The probability density function of the distribution is given 

as: 
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Where,   > 0.5 is the shape parameter and   > 0 is scale 

parameter. It collapses to Rayleigh distribution when   =1 

and half normal distribution   =0.5. 

 

The cumulative distribution function of the distribution is:  
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where P is the incomplete gamma function (regularized). 

The real life applications of the distribution can be seen from 

the contributions of: [1,2,3,4,5]. The papers considering the 

classical/frequentist analysis of the distribution include: [6,7, 

8, 9, 10, 11,12].  

The above discussion suggests that the distribution is still 

waiting for a significant attention of Bayesian statisticians  

especially in case of censored samples. We have considered 

the Bayesian analysis of the scale parameter of the 

distribution under left censored samples. 

The authors considering the Bayesian analysis of the 

probability distributions include: [13,14,15,16,17, 18,19, 20 , 

21,22]. 

 

2. MATERIAL AND METHODS 
This section covers the material and methods for the study. 

2.1 Informative and Uninformative Priors 

Following informative and non-informative priors have been 

used for analysis of the scale parameter of the Nakagami 

distribution. 

2.1.1 Inverse Gamma Prior 

The inverse gamma can be presented as: 
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2.1.2 Uniform Prior 

One of the most famous non-informative priors is a uniform 

prior, it can be given as: 

 P K 
 

2.2 Derivation Of Posterior Estimates 

This section contains the derivation of the Bayes estimators 

and posterior risks under different priors and loss functions. 

2.2.1 Likelihood Function under Left Censored Sample 

Let 1,...,r nX X  be last n – r order statistics from a sample 

of size n from Nakagami distribution. Then the likelihood 

function for the 1,...,r nX X  left censored observations is: 
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2.2.2 Posterior Distribution using Uniform Prior 

The posterior distribution under the assumption of 

Uniform prior is:  
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2.2.3 Posterior Distribution using Inverse Gamma Prior 
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2.2.3 Bayesian Estimation under Different Loss Functions 

In Bayesian analysis the comparisons among different 

estimators are made on the basis of loss functions. We have 

used following loss functions for the derivations of Bayes 

estimates and corresponding posterior risks.  

2.2.3.1 Squared Error Loss Function (SELF) 

The squared error loss function is defined as: 
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2

, SELF SELFL      . The Bayes estimator under 

this loss function is:  SELF   . The risk associated with 

this loss function obtained by using the formula: 
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2.2.3.2 Precautionary Loss Function (PLF) 

The precautionary loss function (PLF) can be presented as:  
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The formulas for Bayes estimate and corresponding posterior 

risk under PLF are as under: 

The Bayes estimator under PLF is:     
1

2 2
PLF    

The posterior risk of the Bayes estimator under PLF is: 

    2PLF PLF      

The Bayesian estimators under both priors cannot be obtained 

in a closed form; we have obtained Bayes estimates 

numerically using mathematica software. 

 

3. RESULTS AND DISCUSSIONS 
A simulation study has been conducted to evaluate the 

behavior and performance of different estimators. A 

comparison in terms of magnitude of posterior risks is needed 

to check whether an estimator is inadmissible under some 

loss function or prior distribution. The samples have been 

simulated for n = 5, 20, 40 and 100. using
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replications. The Bayes estimates have been obtained 

numerically using mathematica software. The resultant Bayes 

estimates and posterior risks under different priors and loss 

functions are presented in the tables below.  

3.1 Simulation Results for Bayesian Estimates under 

Uniform Prior 

The Bayesian estimates and their posterior risks under 

uniform prior are presented in the following tables. 

 

Table 3.1.1:  Bayesian estimates under uniform prior using SELF 

n 
λ= 1,        

θ = 0.1 

λ= 1,         θ 

= 1 

λ= 1,         

θ = 10 

λ= 1,        

θ = 100 

λ= 2,        

θ = 0.1 

λ= 2,         θ 

= 1 

λ=2,         

θ = 10 

λ= 2,        

θ = 100 

10 0.1645 1.6397 16.6701 165.8758 0.1249 1.2917 12.5188 126.0779 

20 0.1099 1.0985 11.0977 110.2445 0.1046 1.0789 10.7941 106.0958 

50 0.1040 1.0378 10.5494 104.5684 0.1019 1.0345 10.4965 103.0914 

100 0.1009 1.0070 10.2243 101.4481 0.1005 1.0062 10.1311 101.3590 

 

Table 3.1.2:  Bayesian estimates under uniform prior using PLF 

n 
λ= 1,        

θ = 0.1 

λ= 1,         θ 

= 1 

λ= 1,         

θ = 10 

λ= 1,        

θ = 100 

λ= 2,        

θ = 0.1 

λ= 2,         θ 

= 1 

λ=2,         

θ = 10 

λ= 2,        

θ = 100 

10 0.2015 2.0082 20.4165 203.1533 0.1335 1.3808 13.3835 134.7785 

20 0.1131 1.1303 11.4195 113.4404 0.1061 1.0934 10.9389 107.5173 

50 0.1054 1.0517 10.6909 105.9698 0.1026 1.0412 10.5642 103.7619 

100 0.1014 1.0121 10.2773 101.9724 0.1007 1.0088 10.1568 101.6155 
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Table 3.1.3 :  Posterior Risks under uniform prior using SELF 

n 
λ= 1,        

θ = 0.1 

λ= 1,         θ 

= 1 

λ= 1,         

θ = 10 

λ= 1,        

θ = 100 

λ= 2,        

θ = 0.1 

λ= 2,         θ 

= 1 

λ=2,         

θ = 10 

λ= 2,        

θ = 100 

10 0.0192 0.2126 1.9372 14.9916 0.0119 0.1103 3.5453 7.5109 

20 0.0036 0.0741 1.0953 14.3666 0.0015 0.0301 0.4639 5.9735 

50 0.0015 0.0297 0.4437 5.8021 0.0009 0.0135 0.2085 2.6767 

100 0.0007 0.0106 0.1569 2.0516 0.0004 0.0050 0.0770 1.0058 

 

Table 3.1.4 :  Posterior Risks under uniform prior using PLF 

n 
λ= 1,        

θ = 0.1 

λ= 1,         θ 

= 1 

λ= 1,         

θ = 10 

λ= 1,        

θ = 100 

λ= 2,        

θ = 0.1 

λ= 2,         θ 

= 1 

λ=2,         

θ = 10 

λ= 2,        

θ = 100 

10 0.0163 0.1614 1.6747 6.5667 0.0085 0.0875 0.8479 8.5393 

20 0.0031 0.0312 0.3157 3.1354 0.0014 0.0142 0.1421 1.3963 

50 0.0014 0.0137 0.1388 1.3762 0.0007 0.0066 0.0664 0.6553 

100 0.0005 0.0050 0.0516 0.5142 0.0003 0.0025 0.0250 0.2515 

 

Table 3.2.2:  Bayesian estimates under inverse gamma prior using SELF 

n 
λ= 1,        

θ = 0.1 

λ= 1,         θ 

= 1 

λ= 1,         

θ = 10 

λ= 1,        

θ = 100 

λ= 2,        

θ = 0.1 

λ= 2,         θ 

= 1 

λ=2,         

θ = 10 

λ= 2,        

θ = 100 

10 0.1388 1.1883 11.3773 109.5740 0.1194 1.1356 10.6808 105.8387 

20 0.1092 1.0402 10.4113 102.1286 0.1048 1.0605 10.1680 102.4613 

50 0.1043 1.0146 10.2096 101.4380 0.1024 1.0250 10.1305 101.7959 

100 0.1013 1.0012 10.1258 100.1475 0.1009 1.0049 10.0569 101.0472 

 

Table 3.2.2:  Bayesian estimates under inverse gamma prior using PLF 

n 
λ= 1,        

θ = 0.1 

λ= 1,         θ 

= 1 

λ= 1,         

θ = 10 

λ= 1,        

θ = 100 

λ= 2,        

θ = 0.1 

λ= 2,         θ 

= 1 

λ=2,         

θ = 10 

λ= 2,        

θ = 100 

10 0.1552 1.3285 12.7206 122.5090 0.1259 1.1971 11.2586 111.5652 

20 0.1120 1.0672 10.6815 104.7801 0.1062 1.0740 10.2974 103.7669 

50 0.1056 1.0275 10.3396 102.7335 0.1031 1.0315 10.1942 102.4412 

100 0.1018 1.0062 10.1767 100.6516 0.1012 1.0074 10.0824 101.3037 

 

Table 3.2.3:  Posterior Risks under Inverse Gamma Prior Using SELF 

n 
λ= 1,        

θ = 0.1 

λ= 1,         θ 

= 1 

λ= 1,         

θ = 10 

λ= 1,        

θ = 100 

λ= 2,        

θ = 0.1 

λ= 2,         θ 

= 1 

λ=2,         

θ = 10 

λ= 2,        

θ = 100 

10 0.0156 0.1943 1.3219 10.9892 0.0110 0.1023 1.9701 5.6761 

20 0.0032 0.0587 0.8520 10.9135 0.0014 0.0274 0.3881 5.2425 

50 0.0014 0.0266 0.3908 5.1266 0.0005 0.0127 0.1877 2.5255 

100 0.0005 0.0101 0.1495 1.9407 0.0002 0.0049 0.0717 0.9807 

Table 3.2.4:  Posterior Risks under Inverse Gamma Prior Using PLF 

n 
λ= 1,        

θ = 0.1 

λ= 1,         θ 

= 1 

λ= 1,         

θ = 10 

λ= 1,        

θ = 100 

λ= 2,        

θ = 0.1 

λ= 2,         θ 

= 1 

λ=2,         

θ = 10 

λ= 2,        

θ = 100 

10 0.0124 0.1777 1.2591 5.6078 0.0068 0.0807 0.6743 4.2961 

20 0.0028 0.0239 0.2286 2.1978 0.0011 0.0131 0.1133 1.0283 

50 0.0012 0.0105 0.1005 0.9628 0.0004 0.0061 0.0530 0.4839 

100 0.0004 0.0039 0.0375 0.3579 0.0001 0.0023 0.0197 0.1861 

 

3.2 Simulation Results for Bayesian Estimates under 

Inverse Gamma Prior 

The Bayesian estimates and their posterior risks under inverse 

gamma prior are presented in the following tables. 

 

4. CONCLUSION 
In this paper, the Bayesian analysis of the scale parameter of 

the Nakagami distribution has been considered under left 

censored samples. The numerical posterior estimates have 

been obtained using mathematica software. From the 

simulation study, it can be assessed that the estimates are 

consistent in nature as the posterior risk is inversely 

proportional to the sample size. The performance of inverse 

gamma prior seems better than that of uniform prior. 

Similarly, the posterior risks under PLF are smaller than 

those under SELF. Hence in case of Bayesian estimation of 

left censored data from Nakagami distribution, the use of PLF 

and inverse gamma prior can be preferred. The results are 

useful for the analysts looking to use the Nakagami 

distribution under left censored samples in any real life 

situations. 
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