
Sci.Int.(Lahore),27(2),1197-1201,2015 ISSN 1013-5316; CODEN: SINTE 8 1197 

 

SOME METHODS FOR COMPETING RISKS 
WITH AND WITHOUT MASKED CAUSE OF FAILURE: 

A SHORT REVIEW. 
Yosra Yousif

1
, F. A. M. Elfaki

2,*
, Meftah Hrairi

1
and M. Azram

2 

1Department of Mechanical Engineering, Faculty of Engineering, International Islamic University Malaysia,  

Malaysia, 50728, Kuala Lumpur, Malaysia 
2Department of Science in Engineering, Faculty of Engineering, International Islamic University  

Malaysia, 50728, Kuala Lumpur, Malaysia 

*Corresponding author e-mail: faizelfaki@yahoo.com; faizelfaki@iium.edu.my 

ABSTRACT: Standard survival analysis focuses on failure-time data that has one type of failure. Competing risks arise in 
studies when subjects are exposed to more than one cause of failure and failure due to one cause excludes failure due to 
other causes. Examples of competing risks data can be found in many fields such as public health, industrial reliability, and 
demography. In some circumstances, the cause of failure in competing risks data could be masked. In such situations the 
standard survival analysis might not be applicable. There has been considerable work done discussing these issues in the 
statistical literature during the past several years, and this paper presents a review of some methods proposed for competing 
risks data with and without masking. 
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1. INTRODUCTION 
The situation in which competing risks are present has been 

expressed in different ways. [1] described competing risks as 

the situation in which an individual can experience more than 

one type of event. [2] explained it as the failure to achieve 

independence between the time to an event and the censoring 

mechanism. [3] defined the concept of competing risks as the 

situation where one type of event „either precludes the 

occurrence of another event under investigation or 

fundamentally alters the probability of occurrence of this 

other event‟. 

Survival data in presence of competing risks arises in several 

areas such as public health, demography and industrial 

reliability. For example, in medical studies of treatment effect 

on death from cancer, death from other causes must be taken 

into account. 

The standard methods for survival analysis might not be 

applicable in case of competing risks, for instance, the usual 

Kaplan-Meier estimates cannot be interpreted as probabilities 

in the presence of competing risks [4]. However, an 

alternative method, which is the cumulative probability of 

failure from a specific cause over time, was suggested and 

labeled the cumulative incidence function (CIF) that 

accounted for the competing risks and has a reasonable 

interpretation. A common mistake is to treat failures due to 

other causes as censored events and estimate the cumulative 

incidence function as the complement of the Kaplan-Meier 

estimate of the survival function. This leads to biased 

estimation unless it can be assumed that competing risks are 

independent. 

It is often assumed that the failure time of the event of 

interest, the competing events failure times and the censoring 

times are all independent as this allows for the consistent 

estimation of the survival function. Although there are 

situations in which such independence assumption is of 

questionable validity, many methods (parametric or semi-

parametric) under competing risks framework were 

introduced considering this assumption. 

Most of the methods proposed for competing risks with or 

without masked cause of failure are based on right-censored 

failure time while less work has been done to study the case 

when the failure time is interval-censored. This paper reviews 

different methods that some of them develop statistical tests, 

some consider estimation of the joint survival function or 

cumulative incidence functions, and some discuss the 

regression problem. 

2. COMPETING RISKS 

2.1. METHODS FOR STATISTICAL TESTS 

 A considerable work has been done to develop tests to 

compare the cumulative incidence of different types of failure 

or the hazard rates in the presence of competing risks data. 

Not assuming that the underlying processes leading to 

failures of different types are acting independently for a given 

subject, and based on comparing weighted averages of the 

hazards of the subdistribution for the failure type of interest, 

[5] derived a class of tests to compare the cumulative 

incidence of a particular type of failure among different 

groups for right-censored competing risks data. While, [6] 

derived the likelihood ratio statistic for testing the null 

hypothesis of  equality of cause- specific hazard rates, which 

are obtained under the restriction that these risks are 

uniformly ordered, against ordered alternatives. They also 

assumed a discrete time framework and allowed for right 

censoring. Unlike the two previous methods [7], considering 

uncensored case, provided a simple nonparametric hypothesis 

test (SNPHT) for comparing the cumulative incidence 

functions of a competing risks model when two causes of 

failure are possibly statistically dependent. The test statistic is 

the weighted sum of the differences of two cumulative 

incidence functions at system failure times. 

2.2. METHODS FOR ESTIMATING THE JOINT 

SURVIVAL AND CUMULATIVE INCIDENCE 

FUNCTIONS 

Estimation of the joint survival function and the cumulative 

incidence function based on competing risks data discussed 

extensively in the literature. A lot of attempts to estimate the 

joint survival function (generally called the multiple 

decrement function) were presented based on the observed 

data (including the failure time and the cause of failure), 

however the question of the identifiability of the estimator 
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immediately arises. To overcome identifiability problem [8] 

established the identifiability of the problem under the 

assumption that the random variables corresponding to the 

cause-specific failure times are mutually independent 

although this assumption of independence cannot be tested 

from the observed data. Bayesian methods, on the other hand, 

can provide unambiguous solutions to inference problems in 

the presence of nonidentifiability. Thus a number of studies 

in which Bayes estimates have been obtained were developed 

although the inconsistency of Bayes estimators was 

established in the presence of nonidentifiability. [30] 

stablished the foundations from which the efficacy of 

Bayesian updating in competing risks problems can be 

assessed, as the efficacy of Bayes estimators in such contexts 

(nonidentifiability) has received rather little attention. They 

use the term "efficacy" in comparing prior and posterior 

estimates, and refer to Bayesian updating as efficacious in 

circumstances in which the posterior estimate is better than 

the prior estimate.  

They obtained a useful representation of the posterior 

distribution of the multiple decrement function assuming a 

Dirichlet process prior with a continuous prior measure α and 

derive the limiting posterior distribution. Later in a 

companion paper, [9] developed a complementary analysis 

with a discrete α to provide Bayes estimators of the multiple 

decrement function from discrete data. 

As the usual Kaplan-Meier estimate cannot be interpreted as 

probability in the presence of competing risks, the cumulative 

incidence function (CIF) as an alternative, that accounted for 

the competing risks and has a reasonable interpretation, was 

first suggested by  [10]. Since then many authors have 

studied the estimation of the CIF considering different 

situations. [11] proposed a simple version of the Gompertz 

distribution to parameterize the cumulative incidence 

function directly. They mentioned that in cases where the 

cumulative incidence function is of primary interest, it may 

be more natural to model the cumulative incidence function 

directly than it is to model the cumulative incidence function 

indirectly via the cause-specific hazards.  While [12], using 

the stable distributions family of Hougaard, proposed a new 

four-parameter distribution by extending a two-parameter 

log-logistic distribution. They carried out a simulation study 

to compare the cumulative incidence estimated with this 

distribution with the estimates obtained using a non-

parametric method. The results indicated that the four-

parameter modeling of CIF was as efficient as the non-

parametric method and sometimes led to better estimates of 

CIF.  Recently, [13] considered parametric estimation of the 

cumulative incidence function (CIF) for competing risks data 

subject to interval censoring. In their article, they extended 

the [11] models to the general case of interval censored 

competing risks data and both maximum likelihood 

estimators (MLEs) and a naive estimator, which enables 

separate estimation of models for each cause, are considered. 

The naive likelihood is shown to be valid under mixed case 

interval censoring, but not under an independent inspection 

process model, in contrast with full maximum likelihood 

which is valid under both interval censoring models. 

 

2.3. METHODS FOR REGRESSION  
Considering the regression issue, a noticeable work has been 

presented based on competing risks data. For competing risks 

data with covariates, the analysis usually involves modeling 

the cause-specific hazard functions or cumulative incidence 

functions. As the cause-specific hazard function does not 

have a direct interpretation in terms of survival probabilities 

for a particular failure type, [14] proposed a novel 

semiparametric proportional hazards model for the 

subdistribution. The partial likelihood principle and 

weighting techniques were employed to derive estimation and 

inference procedures for the finite-dimensional regression 

parameter under a variety of censoring scenarios. Likewise, 

[15] modeled the cumulative incidence functions directly 

extending [39] method to the regression setting. They 

developed maximum likelihood inferences in which 

parametric models for the cumulative incidence functions for 

all causes are fit simultaneously. The baseline distribution 

was modeled using a Gompertz specification, which 

accommodates improper distributions like the cumulative 

incidence function. Furthermore, [16] considered a simple 

and flexible class of regression models that is easy to fit and 

contains the Fine–Gray model as a special case. One feature 

of this approach is that the regression modeling allows for 

non-proportional hazards. It is also allows for assessing the 

time-varying covariate effects in the data that cannot be 

covered by the Cox type model. In contrast, under the cause 

specific hazard rate framework [17] introduced a 

semiparametric Bayesian method assuming that each 

cumulative baseline cause-specific hazard rate function has a 

gamma prior distribution, and a marginal likelihood function 

based on data and the prior parameter values was proposed 

for the estimation of regression parameters by considering 

cumulative baseline cause-specific hazard rate functions as a 

nuisance parameter. Their method generalizes the work of 

[18]  to the competing risks set up. Similarly, [19] modeled 

each cause-specific hazard with the additive hazard model 

that includes both constant and time-varying covariate effects 

employing [20] additive model. They developed the 

estimation methods for the covariate effects on the all-cause 

hazard, as well as for the survival and cumulative incidence 

functions, and derived the variance estimators of the 

estimated survival and cumulative incidence functions.  

3. COMPETING RISKS WITH MASKED CAUSE OF 

FAILURE 

3.1. METHODS BASED ON SERIES SYSTEM 

FORMULATION 

In competing risks data, sometimes information on the actual 

cause of failure for some subjects might be missing and can 

only be narrowed down to a set of potential causes. Such data 

is termed masked failure data, and it is quite common in the 

fields involving competing risks data. This phenomenon was 

widely studied during the three last decades. A substantial 

literature is available in work considering series system 

formulation in terms of latent failure times (observing the 

minimum of several lifetimes), as authors are often interested 

in estimating the reliability of components. For example, [21] 

discussed how to exploit all of the available information 

using a maximum likelihood approach extending and 
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clarifying the useful work of [22]. They developed a 

likelihood approach for estimating component reliabilities 

from system life data when the cause of failure may be 

unknown. They adopted the symmetry assumption that entails 

an equal chance of observing the same masked subset of risk 

components irrespective of the true cause (within the masking 

subset) of failure. Unlike, [23] discussed reliability estimation 

when the masking probability is dependent on the particular 

cause of failure. They mentioned that when the number of 

masked failure is small relative to the number of observed 

failures the MLE's will often be relatively robust. They also 

illustrated how far off the maximum likelihood estimates 

(MLE's) of failure rates assuming independent masking can 

be from the correct MLE's under various degrees of 

dependent masking.  Recently, [24] showed that the solution 

to the nonparametric maximum likelihood estimate (NPMLE) 

is not unique, and the NPMLE proposed in the current 

literature is inconsistent. Moreover, they constructed a 

consistent NPMLE and established its asymptotic normality. 

Their proofs do not rely on the symmetry assumption. In 

contrast, [25] developed methods for analyzing masked data 

from a Bayesian perspective. Under the assumptions of 

independent masking and exponentially distributed 

component life, they have shown that masked system life data 

can be effectively used in the estimation process. While [26] 

developed a Bayesian analysis for masked data from a 

general K component system. They assumed non-identical 

Weibull distributions for the failure times, and for more 

flexibility three different prior models are proposed. One 

crucial assumption in their method is the assumption of 

independence among the K competing risks. Furthermore, 

[27] investigated a general Bayesian formulation that 

includes most commonly used parametric lifetime 

distributions and that is sufficiently flexible to handle 

complex forms of censoring. They have provided a unified 

Bayesian modeling and inference framework under 

methodology based on Markov chain sampling. [28] unlike 

[27] have not subjected the masking probabilities to the 

symmetry assumption. They used independent Dirichlet 

priors to marginalize these nuisance parameters, and 

illustrated the developed methodology for the case where the 

components of a series system have independent log-Normal 

life distributions by employing independent Normal-Gamma 

priors for the component lifetime parameters. They 

mentioned that Gibbs sampling scheme developed for the 

required analysis can also be used to provide a Bayesian 

analysis of data arising from the conventional competing 

risks model of independent log-Normals. In addition, [29] 

considered a nonparametric Bayesian approach for masked 

data extending [30] results to series systems with partially 

masked competing risks. Relaxing the usual assumption of 

independence of failure causes they obtained the posterior 

distribution of the joint survival function, assuming a 

Dirichlet process prior, and derived the limiting posterior 

distribution. They showed that the posterior estimate of the 

reliability of the series system of interest in practice is 

consistent. 

3.2. METHODS BASED ON CAUSE-SPECIFIC 

HAZARD FORMULATION 

          Using the cause-specific hazard formulation, many methods 

were developed to make inference for competing risks with 

masked data. [31] showed how stage1 and stage 2 

information can be combined to provide statistical inference 

in the presence of competing risks data with masked cause of 

failure. They proposed maximum likelihood estimation using 

a model with nonparametric proportional hazards. Since in 

many practical situations the assumption of proportional 

hazards cannot be justified, [32] proposed a model with 

completely parametric cause-specific hazards, and discussed 

in detail the case where the failure times for the competing 

risks have a Weibull distribution. Moreover, based on the EM 

algorithm [33] proposed inference methods for estimating the 

parameters of a weakly parameterized competing risks model 

with masked causes of failure and second-stage data. Their 

method is flexible enough to handle cases with only one-

stage data or grouped data, and to allow the masking 

probabilities to depend on time. Further, it can be used to 

conduct robust likelihood ratio tests for some assumptions 

such as the proportional hazards assumption and the 

symmetry assumption. In addition, [34] proposed an EM-

based approach which allows for dependent competing risks 

and produces estimators for the subdistribution functions 

(CIFs). They showed that models with piecewise constant 

hazards can be used for estimation in a general situation in 

which the competing risks do not act independently. Besides, 

they discussed identifiability of parameters if none of the 

masked items have their cause of failure clarified in a second 

stage analysis. 

 

3.3. METHODS FOR REGRESSION  
To assess the covariates effect in competing risks data with 

masked cause of failure, noticeable methods were developed. 

For example, [35] proposed a method to estimate the 

regression coefficients in a competing risks model when 

cause of failure is missing for some subjects, and where the 

cause-specific hazard for the cause of interest is related to 

covariates through a proportional hazards relationship. They 

used parametric models to model the probability that a 

missing cause is that of interest, and employed multiple 

imputation procedures to impute missing cause of failure. In 

addition, when cause of failure is missing at random [36] 

considered the problem of estimating the regression 

coefficient, where the relationship between the cause-specific 

hazard for the cause of interest and covariates is described 

using linear transformation models. They derived augmented 

inverse probability weighted complete-case estimators for the 

regression coefficient. [37] developed a semiparametric 

Bayesian approach under the framework of cause-specific 

hazard function, where the partial information about the 

cause of death is incorporated by means of latent variables. 

Their approach does not need to rely on assumptions such as 

symmetry and second-stage data. They discussed three 

different models using a variety of priors, and exploited the 

simulation-based MCMC technique to implement the 

Bayesian methodology. While [38] explored the use of 

multiple imputations for cause-specific hazard modeling of 

cumulative incidence when causes of death data are 

incomplete. The effects of covariates on cause-specific 
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hazard functions were assumed to satisfy proportional 

hazards models. They proved the asymptotic normality of the 

multiple imputation estimates and derived a consistent 

variance estimate for them.  

 

4. CONCLUSION 
In this paper we tried to review some methods involving 

competing risks data with and without masked cause of 

failure. The literature on such data is abundant, since 

interesting and varied methods have been presented 

considering such data in order to tackle inference issues. As 

can be noticed many of these methods were developed under 

some common assumptions although these assumptions are 

of questionable validity and cannot be tested using the 

observed data. For instance, the independence of the 

competing risks and censoring mechanism assumption is 

crucial for some methods to work out. Besides, the symmetry 

assumption which has been extensively employed when the 

case is competing risks with masked cause of failure. 

Moreover, the majority of authors discussed the case when 

the failure time is right-censored. However, much less work 

has been done considering other types of censoring, and no 

one according to our knowledge studied the partly interval-

censored case under competing risks framework. There are 

many topics can be investigated for partly interval-censored 

data based on competing risks with and without masking. For 

instance, one can study the estimation of the cumulative 

incidence functions, or discuss the regression case either 

parametrically or non-parametrically for both cases with and 

without masking.  

Extending some methods reviewed above we are going to 

study a Bayesian analysis to competing risks with masked 

data in the presence of partly interval-censoring. Our work is 

based on cause-specific hazard formulation, and utilizes the 

Markov Chain Monte Carlo (MCMC) technique. 

Furthermore, our interest is in engineering applications as 

most of the approaches that have been developed in 

engineering field were based on series system formulation. 
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