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ABSTRACT: A non-empty subset S of a valued field K is said to have the optimal approximation property if every 

element in the field K has a closest approximation in S. This property relates to the model theory of valued fields, which 

was introduced by F.V. Kuhlmann in [1]. The notion becomes more involved when the set S is the image of a polynomial 

map on K. In this paper, we present some classes of polynomials over a henselian discretely valued field, whose image set 

has optimal approximation property. 
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1.  INTRODUCTION 

We denote the set of natural numbers, integers, rational 

numbers and real numbers by N, Z, Q and R, respectively. 

For a prime number p, Fp denotes the finite field with p 

elements. For a valued field (K,v) we will denote its value 

group by vK, valuation ring by R and the residue class field 

by Kv. For aϵK, va denotes its value and for aϵR, ā denotes 

the residue class of a. The reduction of a polynomial 

f(X)ϵK[X] in Kv is denoted by f
 
(X). For the basic facts of 

valuation theory and model theory, we refer the reader to 

[2,3,4,5].  

For any extension field L of K, there is at least one 

extension w of v from K to L, i.e., w|K=v (cf. [2], Theorem 

3.1.2). A valued field (K,v) is called henselian if the 

valuation v can be uniquely extended to each algebraic 

extension of the field K. This holds if and only if (K,v) 

satisfies the following lemma:  

Lemma 1.1. (Hensel’s Lemma) Let f(X)ϵR[X] be a 

polynomial such that f
 
(X)ϵKv[X] has a simple root αϵKv. 

Then f
 
 (X) has a root aϵR such that ā =α. 

Every valued field (K,v) admits a henselization, i.e., a 

minimal (separable) algebraic extension field which is 

henselian. All henselizations of (K,v) are isomorphic, 

therefore we talk of the henselization and denote it by K
h
. A 

valued extension (L,w) of (K,v) is called immediate if 

vK=vL and Kv=Lw. For instance, completion and 

henselization of a valued field are immediate extensions. A 

valued field is called (algebraically) maximal if it does not 

possess any proper immediate (algebraic) extension. An 

algebraically maximal field or a maximal field is always 

henselian but not vice versa (see [6], 3.6).  

A subset S of (K,v) is said to have the Optimal 

Approximation Property (OA) if for all aϵK, the set  

v(a-S) ={v(a-s) : sϵS} 

has a maximal element in vKU{∞}. The notion of optimal 

approximation was introduced by F.V. Kuhlmann in [1] 

while studying the elementary properties of the valued field 

Fp((t)) equipped with the usual t-adic valuation vt. The 

followings are some useful implications given in [7].  

Lemma 1.2. Every compact subset of (K,v) has OA. Every 

set which has OA is closed in (K,v). 

 This approximation property relates to the model theory of 

valued fields since it is elementary for definable S. The 

image  

S ={ f(a1,…, an) :  a1,…, an ϵK} 

of K under a polynomial f ϵK[X1,…, Xn] is definable, so the 

question arises: when this image has OA? Following 

answers to the later question was given in [7] and [1]. 

For convenience, we use the following definition: 

Definition 1.3. A polynomial fϵK[X1,…, Xn] has OA in 

(K,v) if the image of K under f has OA. 

In [1], F.V. Kuhlmann proved that any polynomial in one 

variable over an algebraically maximal field has OA. It is 

also shown that if (K, v) is maximal, then any additive 

polynomial in several variables satisfying an additional 

condition, has OA in (K,v). In [7], by removing the 

additional condition, Lou van den Dries and F.V. 

Kuhlmann showed that any additive polynomial in several 

variables has OA in (Fp((t)),vt). 

All the valued fields considered above are not just 

henselian but they also have some more fruitful properties. 

For instance, Fp((t)) is a discrete, locally compact valued 

field and this last feature is actually used to prove the result 

given in [7]. 

In this paper, we consider (K,v) to be henselian with vK=Z 

and present some classes of polynomials in one variable 

that have OA. The situation considered is more general in 

some sort as an algebraically maximal field or a maximal 

field is always henselian but not vice versa. 

 

2.  POLYNOMIALS HAVING OA PROPERTY 
In the following, we will present the mentioned classes of 

polynomials. For this, we gather some required 

information. 

Let S be a non-empty subset of a valued field (K,v). If S 

does not have OA then there are two possibilities: For some 

xϵK, either 

1. v(x-S) has no maximum but v(x-S)<α for some αϵvK, or 

2. v(x-S) is cofinal in vK. 

If the value group vK is isomorphic to Z, then it dismisses 

the first possibility. The second possibility implies that 

there exists a sequence (sα)αϵN in S such that v(x- sα) is 

cofinal in vK. This means that the sequence (sα)αϵN has limit 

xϵK\S and consequently it shows that the set S is not closed 

in (K,v). Thus S closed in (K,v) dismisses the second 

possibility and we have a converse to Lemma 1.2. 

Proposition 2.1. Let the field K be equipped with a discrete 

rank 1 valuation v. Then a non-empty subset S of K has OA 

if and only if it is closed in (K,v). 

For (K,v) with vK=Z, throughout we assume πϵK to be a 

uniformizer, i.e., v(π)=1. Then any xϵK
×
 can be uniquely 

written as: x=π
n
u, where n=v(x) and uϵR

×
. For any non-

empty subset S of a valued field (K,v) with vK=Z, we 

define: 

S
*
={sπ

-v(s)
 : sϵ S \{0}}, 

so-called the set of associated units of S. We use the 

following criteria to establish our desired results. The proof 

is straightforward, therefore omitted. 

Proposition 2.2: Let (K,v) be a discrete rank 1 valued field. 

A non-empty subset S of K has OA if v(S) and v(u-S
*
) have 

maximum for all u ϵR
×
\S

*
. 

Let f(X)=a0+a1X+…+anX
n
ϵK[X]. For any mϵZ, we define 

the polynomial 
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fm(X):=π
-M

f(π
m
X), 

where M=min1≤i≤n{v(ai)+im}. Note that the polynomial 

fm(X)ϵR[X]. 

Lemma 2.3. Let (K,v) be henselian with vK=Z. For 

f(X)ϵK[X], the set vf(K) has maximum if for every mϵZ, the 

polynomial f
 
m(X)ϵKv[X] has no non-zero root in Kv. 

Proof: Let f(X)=a0+a1X+…+anX
n
 and φ(X):=an

-1
f(X). Since 

φm(X)=an
-1

π
Mc

fm(X), where c=v(an) and vf(a)=vφ(a)+v(a) for 

all aϵK, therefore we may assume f(X) is monic. Further, 

since f(X)=a(X)b(X) implies that fm(X)=am(X)bm(X), 

therefore we assume that f(X) is irreducible. Now, let E be 

the splitting field for f(X) and let α=α1,α2,…,αnϵE be the 

roots of f(X), then f(X)= П1≤i≤n(X-αi). Let w be the unique 

extension of v from K to E and aϵK. Then 

vf(a)=v(П1≤i≤n(a-αi))=∑1≤i≤n w(a-αi). 

For αϵE, there exist σiϵAut(E/K) such that σi(α)= αi. Since 

σi(a)=a for all aϵK, therefore the above expression can be 

written as: 

vf(a)= ∑σϵAut(E/K) w○σ(a-α). 

Since E/K is normal, therefore by Conjugation theorem 

(Theorem 3.2.5 of [2]), every extension of v is of the form 

w○σ. But (K,v) is henselian, which implies that w=w○σ for 

all σϵAut(E/K). Hence vf(a)=nw(a-α). Now, if 

v(a)≠w(α)ϵwE, then vf(a)≤nw(α). Since w(α)ϵwE and E/K is 

algebraic, therefore wE can be considered as additive 

subgroup of R (see [2], Corollary 3.2.5). Hence the set 

{vf(a) : aϵK, v(a)≠w(α)} is bounded in Z. For otherwise 

case, we have v(a)=w(α)=mϵZ. Then a= π
m
u for some u ϵR

×
 

and fm(u)= π
-M

f(a), where M=min1≤i≤n{v(ai)+im}. Since 

f
 
m(X) has no non-zero root in Kv, therefore f

 
m(ū)≠0. But this 

means that vfm(u)=0 and consequently, vf(a)=M. This 

shows that vf(K) is bounded in Z and consequently vf(K) 

has maximum.                             □  

Now we present promised results. 

Theorem 2.4. Let (K,v) be henselian with vK=Z. A 

polynomial f(X)ϵK[X] has OA if for every mϵZ, 

1. f
 
m(X) has no non-zero root in Kv, and 

2. f
 
m(X)-ūϵKv[X] is separable for all uϵR

×
. 

Proof: Using the first condition, Lemma 2.3 implies that 

vf(K) has maximum. Hence by proposition 2.2, it is 

sufficient to show that the set v(u-f(K)
*
) has maximum for 

all uϵR
×
\f(K)

*
. First we claim that f(K)

*
=UmϵZ fm(R

×
). Indeed, 

since fm(X)ϵR[X], therefore for any uϵR
×
, we have vfm(u)≥0. 

The first condition implies that f
 
m(ū)≠0 for all uϵR

×
. Thus 

vfm(u)=0 and vf(π
m
u)=M for all uϵR

×
. Hence we conclude 

that fm(R
×
)=f(Km)

*
, where Km={aϵK : va=m}. Consequently 

f(K)
*
=UmϵZ fm(R

×
) 

as claimed. Now, let uϵR
×
\f(K)

*
, then uϵR

×
\fm(R

×
) for all 

mϵZ. If ūϵf
 
m(Kv) for some mϵZ, then this means that ū= 

f
 
m(ā) for some a ϵR

×
. Hence by the second condition,  āϵKv 

is a (simple) root of the separable polynomial f
 
m(X)-

ūϵKv[X]. Thus by Hensel's Lemma, there exists eϵR
×
 such 

that ā=ē and e is a root of fm(X)- uϵR
×
[X]. This means that 

u=fm(e)ϵfm(R
×
), which is a contradiction as u does not 

belong to fm(R
×
). Thus ū does not belong to f

 
m(Kv) for all 

mϵZ, i.e., ū≠f
 
m (ā) for all aϵ R

×
 and mϵZ. This means that 

v(u-fm(K)
*
)={0} for all mϵZ and hence consequently v(u-

f(K)
*
)={0}. Hence the proof is now completed.       

The most easy example of a polynomial which satisfies the 

conditions of the above Theorem is f(X)=X
n
ϵK[X], where 

(K,v) is henselian with vK=Z and n is not divisible by char 

Kv. Hence by the above theorem, the image f(K)=K
n
 has OA 

in (K,v). Particularly for any nϵN which is not divisible by 

the prime p, the polynomial f(X)=X
n
 or more generally 

f(X)=(aX+b)
n
, a≠0 has OA in (Fp((t)),vt). Since n is coprime 

with p, therefore the above polynomial is not additive in 

general. Hence, this trivial example lies in the counter part 

of the polynomials given in [7]. 

Remark 2.5. The condition (K,v) to be henselian cannot be 

omitted from the hypothesis of Theorem 2.4. For instance, 

take the valued field (Q,v5) which is not henselian. The 

polynomial f(X)=X
2
 satisfies both the conditions of 

Theorem 2.4, but f(X)=X
2 

does not have OA in (Q,v5) as the 

set v(-1-Q
2
) is cofinal in Z. Indeed, note that iϵQ5 (since the 

polynomial X
2
+1ϵF5[X] has simple roots 2 and 3 in F5, 

therefore by Hensel's lemma f(X)=X
2
+1 has a root i in Q5. 

Now since (Q5,v5) is complete, therefore there exists a 

sequence (sn)n in Q such that sn→i. Since X
2 

is a continuous 

function, it implies that s
2
n→-1, i.e., the sequence s

2
n does 

not converge in Q
2
. Hence the set {v(-1- s

2
n) n} is 

unbounded in Z and consequently the set v(-1-Q
2
) has no 

maximum in Z. 

 By using Theorem 2.4 and Proposition 1.5.1 of [4], one 

can derive the following particular case of the result proved 

in Lemma 13 of [1]. 

Lemma 2.6. Let K be a finite extension of either Qp or 

Fp((t)). Then every monic polynomial f(X) in R[X] of 

degree relatively prime to p has OA. 

Proof: Since f(X)ϵR[X] is monic therefore one gets for 

m<0:fm(R
×
)=f(K

m
)

*
 and f(K\R)

*
= Um<0 fm(R

×
). Since f

 
m(X)=X

n
 

satisfies both conditions of Theorem 2.4, therefore by 

following the proof of Theorem 2.4, one can conclude that 

f(K\R) has OA in (K,v). Moreover, (K,v) locally compact 

implies that the valuation ring R is compact (see 

Proposition 1.5.1 of [4]). As f is a continuous function 

(being a polynomial), it implies that f(R) is also compact. 

Thus by Lemma 1.2, f(R) has OA. Since f(K)=f(K\R)Uf(R), 

therefore it implies that the polynomial f(X) has OA in 

(K,v).                □ 

The above result requires our valued field to be locally 

compact but now we content to henselian valued field.  

Theorem 2.7. Let (K,v) be henselian with vK=Z. Let 

f(X)=∑r≤i≤n aiX
i
ϵR[X] such that r and n be not divisible by 

char Kv, and ar,anϵR
×
. Then f(X) has OA if the polynomial f

 
 

(X)ϵKv[X] satisfies conditions 1 and 2 of Theorem 2.4. 

Proof: Observe that: f
 
m(X)= ānX

n
 for m<0, f

 
m(X)= ārX

r
 for 

m<0 and f
 
m(X)=f

 
(X) for m=0. Both the polynomials ānX

n
 

and ārX
r
 satisfy the conditions of Theorem 2.4. Hence if 

f
 
(X) also satisfies the conditions, then by Theorem 2.4, f(X) 

has OA.         

We conclude with an example, which is constructed by 

using the above Theorem. 

Example 2.8. Let (K,v) be any henselian field with vK=Z 

and char Kv =p>0. Let φ(X)ϵKv[X] be a polynomial which 

has no non-zero root in Kv. Then for q=p
d
, dϵN, the 

polynomial f
 
 (X)=X φ(X

q
)ϵKv[X] has no non-zero root in Kv. 

Moreover, f
 
 (X)-ū  is separable for all uϵR

×
. Hence f

 
 (X) 

satisfies conditions 1 and 2 of Theorem 2.4. Further 

Theorem 2.7 implies that any lifting of f
 
 (X), of the form 

∑r≤i≤n aiX
i
ϵR[X]  such that r and n are not divisible by p, has 

OA. In particular, the polynomial f(X)=X
10

+2X
4
+X over 

(Q
h
,v3) has OA (since f

 
 (X)= X

10
+2X

4
+X in F3[X] is 

obtained by taking φ(X)=X
3
+2X+1 and d=1).  
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