ON THE METRIC DIMENSION OF FAMILIES OF GRAPHS HAVING DIAMETER THREE

Mubeen Munir, Abdul Rauf Nizami, Waqas Nazeer, Numan Amin
Division of Science and Technology, University of Education, Township Lahore-Pakistan
E-mail: mmunir@ue.edu.pk, arnizami@ue.edu.pk, waqaster@yahoo.com, numanamin92@hotmial.com

Abstract

The concept of minimum resolving set has been proved to be useful and is related to a variety of fields such as chemistry [1,3], robotic navigation [2,5], combinatorial search, and optimization [4]. This work is devoted to evaluate the metric dimension of some families of graphs having diameter three.

AMS Subject Classification: 05C12, 05C15, 05C78.
Key words: Diameter, Metric dimension, Resolving set.

1. INTRODUCTION

Resolving sets, in general graphs, were first studied by Harary, Melter [20], and Slater [22], although the resolving sets for hypercubes were studied earlier under the guise of a coin weighing problem $[6,10,11,18,19]$. Since then the resolving sets have been widely investigated, see for instance $[9,12,13,14,15,17]$. A resolving set arises also in many diverse areas including network discovery and verification [7], connected joins in graphs [21], and strategies for the mastermind games $[8,16]$.
A graph G is an ordered pair (V, E), where V is the set of verteices and E the set of edges. The distance between vertices $v, w \in V$, denoted by $d(v, w)$, is defined as the length of the shortest path between v and w , and the diameter of G , denoted by $\operatorname{dia}(\mathrm{G})$, is defined as the maximum distance among all pairs of vertices in G.
A vertex $x \in V$ resolves a pair of vertices $v, w \in V$ if $d(v, x) \neq d(W, x)$. A set of vertices $W \subseteq V$ resolves G if each pair of distinct vertices of G is resolved by some vertex in W . The set W is called the resolving set of G if it resolves G. A resolving set W of G with the minimum cardinality is a metric basis for G , and the minimum cadinality is the metric dimension of G , which is denoted by $\beta(\mathrm{G})$.
For an ordered subset $\mathrm{W}=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ of vertices and a vertex v in a connected graph G, the representation of v with respect to W is the ordered k-tuple

$$
d(v \mid W)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{n}\right)\right)
$$

In this paper, we compute metric dimensions of some interesting families of graphs having diameter three.

2. MAIN RESULTS

The bicentered graph, denoted by $\mathrm{B}_{\mathrm{m}, \mathrm{n}}$, is obtained from the path P_{2} with vertices v and w by attaching m pendant vertices, $v_{1}, v_{2}, \ldots, v_{m}$, to the vertex v and n pendant vertices, $w_{1}, w_{2}, \ldots, w_{n}$, to the vertex w as you can see in the figure:

Theorem 1.

The metric dimension of $\mathrm{B}_{\mathrm{m}, \mathrm{n}}$ is

$$
\beta\left(B_{m, n}\right)=\left\{\begin{array}{lll}
1 & ; & m=n=1 \\
n & ; & m=1, n>1 \\
m+n-2 & ; & m, n>1
\end{array}\right.
$$

Proof. The proof is divided into three cases:
Case I. ($\mathrm{m}=\mathrm{n}=1$) When $\mathrm{m}=\mathrm{n}=1$, the bicentered graph is simply the path P_{4}, which has metric dimension 1.
Case II. ($\mathrm{m}, \mathrm{n}>1$) Here we show that the resolving set is actually $\mathrm{W}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{m}-1}, \mathrm{~W}_{2}, \mathrm{~W}_{3}, \ldots, \mathrm{~W}_{\mathrm{n}}\right\}$. For this, take $d\left(v_{i} \mid W\right)=(2,2, \ldots, 2,0,2, \ldots, 2,3,3,3, \ldots, 3)$, for all $i=1,2, \ldots, m-1$, where 0 appears at i th place.
Also, $d\left(v_{m} \mid W\right)=(2,2,2, \ldots, 2,3,3,3, \ldots, 3)$
$d\left(w_{1} \mid W\right)=(3,3,3, \ldots, 3,2,2,2, \ldots, 2)$, and
$d\left(w_{i} \mid W\right)=(3,3,3, \ldots, 3,2,2,2, \ldots, 2,2,0,2,2, \ldots, 2)$,
for all $i=2,3, \ldots, n$, where 0 appears again at i th place.
Moreover, $d(v \mid W)=(1,1,1, \ldots, 1,2,2,2, \ldots, 2)$ and
$d(w \mid W)=(2,2,2, \ldots, 2,1,1,1, \ldots, 1)$.
Hence W is a resolving set.
To show that W has no proper resolving subset, firstly delete the vertex v_{j} from the set W where $\mathrm{j}=1,2,3, \ldots, \mathrm{~m}-1$, then:
$d\left(v_{j} \mid W-\left\{v_{j}\right\}\right)=d\left(v_{m} \mid W-\left\{v_{j}\right\}\right)$. Hence $W-\left\{v_{j}\right\}$ is not a resolving set.
If we delete W_{j} from the set W where $j=1,2,3, \ldots, n$ then:

$$
d\left(w_{j} \mid W-\left\{w_{j}\right\}\right)=d\left(w_{1} \mid W-\left\{w_{j}\right\}\right), \quad \text { and } \quad \text { again }
$$

$\mathrm{W}-\left\{\mathrm{w}_{\mathrm{j}}\right\}$ is not a resolving set.
Thus, $\beta\left(B_{m, n}\right)=|W|=m+n-2$.
Case III. (m or $\mathrm{n}=1$)
When any one of m or n is 1 , the resolving set is
$\mathrm{W}=\left\{\mathrm{v}_{1}, \mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}-1}\right\}$. Due to similar reasons as give above, we get $\beta\left(B_{m, n}\right)=n$.

The second family of graphs we are interested in is $\mathrm{C}_{4, \mathrm{n}}$, which is obtained by attaching n pendant vertices to some vertex of C_{4}, as you can in the figure:

Theorem 2.

The metric dimension of the graph $\mathrm{C}_{4, \mathrm{n}}$ is $\mathrm{n}+1$.
Proof. Here we show that the resloving set with minimum cardinality is $W=\left\{1,2,3, \ldots, n, v_{2}\right\}$. Note that

$$
d(i \mid W)=(2,2,2, \ldots, 2,2,0,2,2, \ldots, 2)
$$

for all $i=1,2,3, \ldots, n$. Also
$d\left(v_{1} \mid W\right)=(1,1,1, \ldots, 1)$,
$d\left(v_{2} \mid W\right)=(2,2,2, \ldots, 2,0)$,
$d\left(v_{3} \mid W\right)=(3,3,3, \ldots, 3,1)$, and
$d\left(v_{4} \mid W\right)=(2,2,2, \ldots, 2)$.
Hence, W is a resolving set.
If we delete anyone vertex from W , then it does not remains a resolving set. For if we delete one of the n vertices from it, then

$$
d(i \mid W)=d\left(v_{4} \mid W\right)=\left(2,2,2, \ldots, 2_{n}, 2\right)
$$

$\mathrm{W}-\left\{\mathrm{v}_{2}\right\}$ is also not a resolving set because
$d\left(v_{2} \mid W\right)=d\left(v_{4} \mid W\right)=\left(2,2,2, \ldots, 2_{n}\right)$. Since W has no proper resolving subset, $\beta\left(C_{4}(n)\right)=|W|=n+1$. \square The third family of graphs we discussed is $\mathrm{C}_{5, \mathrm{n}}$:

Theorem 3. The metric dimension of $\mathrm{C}_{5, \mathrm{n}}$ is:
$\beta\left(C_{5, n}\right)= \begin{cases}2 ; & n=1 \\ n ; & n>1\end{cases}$
Proof. If $\mathrm{n}=1$, then the resolving set is $\mathrm{W}=\left\{1, \mathrm{v}_{3}\right\}$. To prove W the resolving set, one can easily prove it by taking the distances of all the vertices with W . Take two proper subsets of $\mathrm{W}, \quad W_{1}=\{1\} \quad$ and $\quad W_{2}=\left\{v_{3}\right\}$.
These two sets are not resolving sets because $d\left(v_{3} \mid W_{1}\right)=3=d\left(v_{4} \mid W_{1}\right)$
and
$d\left(v_{1} \mid W_{2}\right)=2=d\left(v_{5} \mid W_{2}\right)$
respectively. So, W has no proper resolving subset. Hence, $\beta\left(C_{5, n}\right)=|W|=2$ for $n=1$.
The resolving set of the $C_{5, n} ; n>1$, with minimum cardinality is $W=\left\{1,2,3, \ldots, n-1, v_{3}\right\}$. To prove W is a resolving set, $d(i \mid W)=(2,2,2, \ldots, 2,2,0,2,2, \ldots, 2,3)$, for all $i=1,2,3, \ldots, n-1$, where 0 appears at i th place. Here
$d(n \mid W)=(2,2,2, \ldots, 2,3)$,
$d\left(v_{1} \mid W\right)=(1,1,1, \ldots, 1,2)$,
$d\left(v_{2} \mid W\right)=(2,2,2, \ldots, 2,1)$,
$d\left(v_{3} \mid W\right)=(3,3,3, \ldots, 3,0)$,
$d\left(v_{4} \mid W\right)=(2,2,2, \ldots, 2)$, and
$d\left(v_{5} \mid W\right)=(3,3,3, \ldots, 3,1)$.
Hence W is a resolving set.
To prove W is minimum resolving set, we delete any vertex from W.
Case 1. If we first delete the $\mathrm{i}^{\text {th }}$ vertex from W , where $\mathrm{i}=1,2, \ldots, \mathrm{n}-1$, then
$d(i \mid W-\{i\})=d(n \mid W-\{i\})=(2,2,2, \ldots, 2,3)$.
Hence, $W-\{i\}$ is not a resolving set.

Case 1I. Now, we delete V_{3} vertex from the resolving set W.
$d\left(v_{3} \mid W-\left\{v_{3}\right\}\right)=d\left(v_{5} \mid W-\left\{v_{3}\right\}\right)=(3,3,3, \ldots, 3) \mathrm{H}$ ence, $W-\left\{v_{3}\right\}$ is also not a resolving set, which implies $\beta\left(C_{5}(n)\right)=|W|=n$.
The fourth family of graphs we work with is $C_{3, l, m, n}$. Let we have a cyclic graph C_{3} with vertices v_{1}, v_{2}, v_{3}. The graph $C_{3, l, m, n}$ is obtained by attaching l pendant vertices $1,2,3, \ldots, l$ with v_{1}, m pendant vertices $1^{\prime}, 2^{\prime}, 3^{\prime}, \ldots ., m$ at v_{3}, and n pendant vertices $1^{\prime \prime}, 2^{\prime \prime}, 3^{\prime \prime}, \ldots, n$ at $v_{2} .($ as in figure below)

Theorem 4.

The dimension of a graph $C_{3, l, m, n}$, is
$\beta\left(C_{3, l, m, n}\right)= \begin{cases}2 ; & l=m=n=1 \\ (l-1)+(m-1)+(n-1) & ; \text { otherwise }\end{cases}$

Proof.

We make three cases in this proof.
Case (1):
If $l=m=n=1$
The set $l=m=n=1$
$\mathrm{W}=\{1,2\}$ is a resolving set. to prove W is a resolving set:

$$
\begin{aligned}
& d(1 \mid W)=(0,3) \\
& d(2 \mid W)=(3,0) \\
& d(3 \mid W)=(3,3) \\
& d\left(v_{1} \mid W\right)=(1,2) \\
& d\left(v_{2} \mid W\right)=(2,1) \\
& d\left(v_{3} \mid W\right)=(2,2)
\end{aligned}
$$

Hence, W is a resolving set. now! we have to prove that W has no proper resolving subset, the proper subsets of W are $\{1\}$ and $\{2\}$ which are not resolving sets, hence
$\beta\left(C_{3, l, m, n}\right)=|W|=2 \quad$ for $\quad l=m=n=1$
Case (2):
Anyone of the l, m, n is greater than 1 , then In this case the resolving set W is
$W=\left\{1,2,3, \ldots, l-1,1^{\prime}, 2^{\prime}, 3^{\prime}, \ldots,(m-1)^{\prime}, 1^{\prime \prime}, 2^{\prime \prime}, 3^{\prime \prime}, \ldots,(n-1)^{\prime \prime}\right\}$
To prove, W is a resolving set, we have
$d(i \mid W)=(2,2,2, \ldots, 2,0,2, \ldots, 2,3,3,3, \ldots, 3)$, for all
$i=1,2,3, \ldots, l-1$, where 0 appears at ith place.
$d(l \mid W)=(2,2,2, \ldots, 2,3,3,3, \ldots, 3)$
$d\left(i^{\prime} \mid W\right)=(3,3,3, \ldots, 3,2,2,2, \ldots, 2,0,2, \ldots, 2,3,3,3, \ldots, 3)$,
for all $i=1,2,3, \ldots, m-1$, where 0 appears at ith place.
$d(m \mid W)=(3,3,3, \ldots, 3,2,2,2, \ldots, 2,3,3,3, \ldots, 3)$,
$d\left(i^{\prime \prime} \mid W\right)=(3,3,3, \ldots, 3,2,2,2, \ldots, 2,0,2, \ldots, 2)$, for all
$i=1,2,3, \ldots, n-1$, where o appears at ith place.
$d\left(v_{1} \mid W\right)=(1,1,1, \ldots ., 1,2,2,2, \ldots 2)$,
$d\left(v_{2} \mid W\right)=(2,2,2, \ldots, 2,1,1,1, \ldots, 1)$,
$d\left(v_{3} \mid W\right)=(2,2,2, \ldots, 2,1,1,1, \ldots, 1,2,2,2, \ldots, 2)$.
Hence W is resolving set.
It remains to prove minimality of W. For this for discuss following cases.
Case 1. If we delete any one vertex from W from ,
$1,2,3, \ldots, l-1$ say i we have:
$d(i \mid W-\{i\})=d(l \mid W-\{i\})$.
Hence $W-\{i\}$ is not resolving set anymore.

Case 2.

If we delete one of vertex from $1^{\prime}, 2^{\prime}, 3^{\prime}, \ldots,(m-1)^{\prime}$ say i^{\prime}
from W, we have:
$d\left(i^{\prime} \mid W-\left\{i^{\prime}\right\}\right)=d\left(n \mid W-\left\{i^{\prime}\right\}\right)$,
hence $W-\left\{i^{\prime}\right\}$ is not resolving set.

Case 3.

If we delete any one vertex from $1 ", 2^{\prime \prime}, 3^{\prime \prime}, \ldots,(n-1) "$ say
$i "$ from W, then:

$$
d\left(i^{\prime \prime} \mid W-\left\{i^{"}\right\}\right)=d\left(m \mid W-\left\{i^{\prime \prime}\right\}\right)
$$

Hence, W has no proper subset which is a resolving set, $\beta\left(C_{3, l, m, n}\right)=|W|=(l-1)+(m-1)+(n-1) ;$

$$
\text { for } \quad l, m, n>1 .
$$

The fifth family of graphs we consider is $\mathrm{C}_{4} \circ C_{3}^{n}$.
This is obtained by joining n copies of C_{3} at one vertex of C_{4} as in figure below.

Theorem 5.

The metric dimension of a graph $\mathrm{C}_{4} \circ C_{3}^{n}$ is $\mathrm{n}+1$.
Proof.
The set $W=\left\{1,3,5,7,2 n-1, v_{2}\right\}$ is a resolving set, to prove W is a resolving set,

$$
d(i \mid W)=(2,2,2, \ldots, 2,1,2 \ldots, 2,2)
$$

for $i=1,3, \ldots, 2 n-1$, where 1 appears at i th place.

$$
d(i \mid W)=(2,2,2, \ldots, 2,1,2, \ldots, 2,2)
$$

for $i=2,4, \ldots, 2 n$, where 1 appears at i th place.

$$
\begin{aligned}
& d\left(v_{1} \mid W\right)=(1,1,1, \ldots, 1,1) \\
& d\left(v_{2} \mid W\right)=(2,2,2, \ldots, 2,0) \\
& d\left(v_{3} \mid W\right)=(3,3,3, \ldots, 3,1) \\
& d\left(v_{4} \mid W\right)=(2,2,2, \ldots, 2,2)
\end{aligned}
$$

Hence, W is a resolving set.
Now, it remains to prove that W has no proper subset which is a resolving set. For this we consider following cases:

Case 1.

We delete any one vertex of W from $1,3, \ldots, 2 \mathrm{n}-1$, say vertex I is deleted, then the set $\mathrm{W}-\{\mathrm{i}\}$ is not a resolving set because

$$
d(i \mid w-\{i\})=d\left(v_{-} 4 \mid w-\{i\}\right)=(2,2,2, \ldots, 2,2)
$$

Case II.

Now, if we delete vertex V_{2} from W , then the set $\mathrm{W}-\left\{\mathrm{V}_{2}\right\}$ is again not a resolving set, because

$$
d\left(v_{2} \mid w-\left\{v_{2}\right\}\right)=d\left(v_{4} \mid w-\left\{v_{2}\right\}\right)=(2,2,2, \ldots, 2 .)
$$

Hence W has no proper subset which is a resolving set.
Since $|\mathrm{W}|=\mathrm{n}+1$ therefore, $\beta\left(C_{4} \circ C_{3}{ }^{n}\right)=n+1$.
The sixth family of graphs is obtained joining v_{2} and v_{4} of $\mathrm{C}_{4} \circ C_{3}^{n}$, we denoted this new family by $\mathrm{C}_{4} \circ C_{3}^{n}$.

Theorem 6.

The metric dimension of the graph $\mathrm{C}_{4}^{\prime} \circ C_{3}^{n}$ is also $\mathrm{n}+1$.

Proof.

The prove is similar to the proof of $\mathrm{C}_{4} \circ C_{3}^{n}$.
The seventh family of graphs which we discussed is $\mathrm{K}_{5}(2, \mathrm{n})$, which is obtained by attaching n pendent vertices $1,2,3, \ldots, \mathrm{n}$ and one brach having two vertices v_{a} and v_{b} at any one vertex of K_{5} having vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$, say at v_{5}. As in figure below

Theorem 7.

The metric dimension of a graph $\mathrm{K}_{5}(2, n)$,

$$
\beta\left(K_{5}(2, n)\right)=\left\{\begin{array}{l}
4 ; \quad n=0 \\
n+3 ; \quad n>0
\end{array}\right.
$$

Proof.
Case 1. (When $\mathrm{n}=0$) Let $W=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$, Since

$$
\begin{aligned}
d\left(v_{1} \mid W\right) & =(1,1,1,1) \\
d\left(v_{2} \mid W\right) & =(0,1,1,1) \\
d\left(v_{3} \mid W\right) & =(1,0,1,1) \\
d\left(v_{4} \mid W\right) & =(1,1,0,1) \\
d\left(v_{5} \mid W\right) & =(1,1,1,0) \\
d\left(v_{a} \mid W\right) & =(2,2,2,1)
\end{aligned}
$$

and

$$
d\left(v_{b} \mid W\right)=(3,3,3,2)
$$

Hence, W is the resolving set. To prove that W is minimal resolving set, let $W-\left\{v_{i}\right\}$ be any arbitrary subset of W , where v_{i} can be any one from $v_{2}, v_{3}, v_{4}, v_{5}$ then

$$
d\left(v_{i} \mid W-\left\{v_{i}\right\}\right)=d\left(1 \mid W-\left\{v_{i}\right\}\right)
$$

Hence, W is the resolving set with minimum cardinality, hence $\beta\left(K_{5}(2, n)\right)=4$ if $n=0$.
Case 2. (When $\mathrm{n}>0$) In this case, take $W=\left\{v_{2}, v_{3}, v_{4}, 1,2,3, \ldots, n\right\}$, Since $d(i \mid W)=(2,2,2,2,2, \ldots, 2,0,2, \ldots, 2)$,
for $\mathrm{i}=1,2, \ldots, \mathrm{n}$, where 0 appears at the i th place.

$$
\begin{aligned}
& d\left(v_{1} \mid W\right)=(1,1,1,2,2,2, \ldots, 2), \\
& d\left(v_{2} \mid W\right)=(0,1,1,2,2,2, \ldots, 2), \\
& d\left(v_{3} \mid W\right)=(1,0,1,2,2,2, \ldots, 2), \\
& d\left(v_{4} \mid W\right)=(1,1,0,2,2,2, \ldots, 2), \\
& d\left(v_{a} \mid W\right)=(2,2,2, \ldots, 2), \\
& \text { and } \quad d\left(v_{b} \mid W\right)=(3,3,3, \ldots, 3) .
\end{aligned}
$$

Hence W is the resolving set for $K_{5}\left(a_{n}, b\right)$.
Now we have to prove that no subset of W is a resolving set. When we delete vertex $\mathrm{i},(\mathrm{i}=, 1,2,3 \ldots, \mathrm{n})$, we receive W - $\{\mathrm{i}\}$ which is the subset of W , this is not a resolving set because:

$$
d(i \mid W-\{i\})=d(a \mid W-\{i\})=(2,2,2, \ldots, 2)
$$

When we delete v_{i} where $\mathrm{i}=2,3,4$, we receive $W-\left\{v_{i}\right\}$ which is not a resolving set, because:

$$
d\left(v_{i} \mid W-\left\{v_{i}\right\}\right)=d\left(v_{1} \mid W-\left\{v_{i}\right\}\right)
$$

Hence, W is a resolving set with minimal cardinality, thus:
$\beta\left(K_{5}(2, n)\right)=|W|=n+3$ for $\mathrm{n}>0$.
The eight family of graphs is $\mathrm{K}_{5}\left(\mathrm{a}_{\mathrm{n}}, \mathrm{b}\right)$, which is shown in the figure below

Theorem 8.

The metric dimension of the graph $\mathrm{K}_{5}\left(\mathrm{a}_{\mathrm{n}}, \mathrm{b}\right), \mathrm{n}+3$.
Proof.
In this family of graphs, the resolving set is

$$
W=\left\{v_{2}, v_{3}, v_{4}, 1,2,3, \ldots, n\right\}
$$

because

$$
\begin{aligned}
& d\left(v_{1} \mid w\right)=(1,1,1,3,3,3, \ldots, 3), \\
& d\left(v_{2} \mid w\right)=(0,1,1,3,3,3, \ldots, 3), \\
& d\left(v_{3} \mid w\right)=(1,0,1,3,3,3, \ldots, 3), \\
& d\left(v_{4} \mid w\right)=(1,1,0,3,3,3, \ldots, 3), \\
& d\left(v_{a} \mid w\right)=(2,2,2,1,1,1, \ldots, 1), \\
& d\left(v_{b} \mid w\right)=(3,3,3,2,2,2, \ldots, 2),
\end{aligned}
$$

and
$d(i \mid w)=(3,3,3,2,2,2, \ldots, 2,0,2, \ldots, 2)$,
For $\mathrm{i}=1,2,3, \ldots, \mathrm{n}$, where 0 appears at ith place.
Now we have to show that no other subset of W is a resolving set for this, we follow steps.
For the first step we delete the verrtex v_{i} from our resolving set W then

$$
d\left(v_{i} \mid W-\left\{v_{i}\right\}\right)=d\left(v_{1} \mid W-\left\{v_{i}\right\}\right)
$$

thus $\mathrm{W}-\left\{v_{i}\right\}$ is not resolving set.
Now we remove the vertex i from W where i can be any one from the vertices $1,2,3, \ldots, \mathrm{n}$, then
$d\left(v_{a} \mid W-\{j\}\right)=d(j \mid W-\{i\})$,
Thus W is the minimal resolving set
$\beta\left(K_{5}\left(a_{n}, b\right)\right)=|W|=n+3$.

REFERENCES

[1] G. Chartrand, D. Erwin, G. L. Johns and P. Zhang, Boundary vertices in graphs, Discrete Math. 263 (2003) 25-34.
[2] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Disc. Appl. Math. 70 (1996) 217-229.
[3] C. Poisson and P. Zhang, The metric dimension of unicyclic graphs, J. Comb. Math Comb. Comput. 40 (2002) 17-32.
[4] A. Seb"o and E. Tannier, On metric generators of graphs, Math. Oper. Res. 29 (2) (2004) 383-393.
[5] B. Shanmukha, B. Sooryanarayana and K. S. Harinath, Metric dimension of wheels, Far East J. Appl. Math. 8 (3) (2002) 217-229.
[6] Noga Alon, Dmitry N. Kozlov, and Van H. Vu. The geometry of coinweighing problems. In Proc. 37th Annual Symposium on Foundations of Computer Science (FOCS '96), pp. 524-532. IEEE, 1996.
[7] Zuzana Beerliova, Felix Eberhard, Thomas Erlebach, Alexander Hall, Michael Hoffmann, Matus Mihalak, and L. Shankar Ram. Network discovery and verification. In Proc. 31st Workshop on Graph Theoretic Concepts in Computer Science (WG’05), vol. 3787 of Lecture Notes in Comput.
Sci., Springer.
[8] Alex Bogomolny and Don Greenwell. Cut the knot: Invitation to Mastermind, 1999. http://www.maa.org/editorial/knot/Mastermind.html.
[9] Robert C. Brigham, Gary Chartrand, Ronald D. Dutton, and Ping Zhang. Resolving domination in graphs. Math. Bohem., 128(1):25-36, 2003.
[10] David G. Cantor. Determining a set from the cardinalities of its intersections with other sets. Canad. J. Math., 16:94-97, 1964.
[11] David G. Cantor and W. H. Mills. Determination of a subset from certain combinatorial properties. Canad. J. Math., 18:42-48, 1966.
[12] Glenn G. Chappell, John Gimbel, and Chris Hartman.
Bounds on the metric and partition dimensions of a graph, 2003.
http://www.cs.uaf.edu/~ \{ \}chappell/papers/metric/.
[13] Gary Chartrand, Linda Eroh, Mark A. Johnson, and Ortrud R. Oellermann. Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math., 105(1-3):99-113, 2000.
[14] Gary Chartrand, Christopher Poisson, and Ping Zhang. Resolvability and the upper dimension of graphs. Comput. Math. Appl., 39(12):19-28, 2000.
[15] Gary Chartrand and Ping Zhang. The theory and applications of resolvability in graphs. A survey. In Proc. 34th Southeastern International Conf. on 22 C'ACERES, HERNANDO, MORA, PELAYO, PUERTAS, SEARA, AND WOOD Combinatorics, Graph Theory and Computing, vol. 160 of Congr. Numer., pp.47-68. 2003.
[16] Vǎsek Chv'atal. Mastermind. Combinatorica, 3(3-4):325-329, 1983.
[17] James Currie and Ortrud R. Oellermann. The metric dimension and metric independence of a graph. J. Combin. Math. Combin. Comput., 39:157-167, 2001.
[18] Paul Erd"os and Alfr'ed R'enyi. On two problems of information theory. Magyar Tud. Akad. Mat. Kutat'o Int. K"ozl., 8:229-243, 1963.
[19] Peter Frank and Robert Silverman. Remarks on detection problems. Amer. Math. Monthly, 74:171-173, 1967.
[20] Frank Harary and Robert A. Melter. On the metric dimension of a graph.Ars Combinatoria, 2:191-195, 1976.
[21] Andr'as Seb"o and Eric Tannier. On metric generators of graphs. Math. Oper. Res., 29(2):383-393, 2004.
[22] Peter J. Slater. Leaves of trees. In Proc. $6^{\text {th }}$
Southeastern Conf. on Combinatorics, Graph Theory, and Computing, vol. 14 of Congressus Numerantium, pp. 549-559. 1975.

