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1. INTRODUCTION 
Resolving sets, in general graphs, were first studied by 

Harary, Melter [20], and Slater [22], although the resolving 

sets for hypercubes were studied earlier under the guise of a 

coin weighing problem [6,10,11,18,19]. Since then the 

resolving sets have been widely investigated, see for 

instance [9,12,13,14,15,17].  A resolving set arises also in 

many diverse areas including network discovery and 

verification [7], connected joins in graphs [21], and 

strategies for the mastermind games [8,16]. 

A graph G is an ordered pair (V, E), where V is the set of 

verteices and E the set of edges. The distance between 

vertices v,w ∈ V, denoted by d(v,w),  is defined as the 

length of the shortest path between v and w, and the 

diameter of G, denoted by dia(G),  is defined as the 

maximum distance among all pairs of vertices in G. 

A vertex x ∈ V resolves a pair of vertices v,w ∈ V if 

d(v, x) d(w, x).  A set of vertices W ⊆ V resolves G if 

each pair of distinct vertices of G is resolved by some vertex 

in W. The set W is called the resolving set of G if it resolves 

G. A resolving set W of G with the minimum cardinality is a 

metric basis for G, and the minimum cadinality is the metric 

dimension of G, which is denoted by β(G).  

For an ordered subset W={ 1 2, ,..., nw w w } of vertices and a 

vertex v in a connected graph G, the representation of v with 

respect to W is the ordered k-tuple  

1 2( | ) ( ( , ), ( , ),..., ( , ))nd v W d v w d v w d v w . 

In this paper, we compute metric dimensions of some 

interesting families of graphs having diameter three. 

 

2. MAIN RESULTS 

The bicentered graph, denoted by 
m,n B ,  is obtained from 

the path 2P  with vertices v and w by attaching m pendant 

vertices, 1 2, ,..., ,mv v v  to the vertex v and n pendant 

vertices, 1 2, ,..., ,nw w w  to the vertex w as you can see in 

the figure: 

 

             
Theorem 1. 

The metric dimension of
m,n B  is 
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Proof . The proof is divided into three cases: 

Case I. (m=n=1) When m=n=1, the bicentered graph is 

simply the path 4P , which has metric dimension 1. 

Case II. (m,n>1) Here we show that the resolving set is 

actually 1 2 m-1 2 3 nW={v ,v ,...,v ,w ,w ,...,w } . For this, take  

( | ) (2,2,...,2,0,2,...,2,3,3,3,...,3)id v W  , 

for all 1,2,..., 1,i m   where 0 appears at ith place. 

Also, ( | ) (2,2,2,...,2,3,3,3,...,3)md v W   

1( | ) (3,3,3,...,3,2,2,2,...,2)d w W  , and 

( | ) (3,3,3,...,3,2,2,2,...,2,2,0,2,2,..., 2)id w W  , 

for all 2,3,..., ,i n  where 0 appears again at ith place. 

Moreover, ( | ) (1,1,1,...,1,2,2,2,...,2)d v W   and 

( | ) (2,2,2,...,2,1,1,1,...,1)d w W  .   

Hence W is a resolving set. 

To show that W has no proper resolving subset, firstly delete 

the vertex jv  from the set W where j=1,2,3,…,m-1 , then: 

j j m jd(v |W-{v })= d(v |W-{v }) . Hence W-{ jv  } is not a 

resolving set. 

If we delete 
jw  from the set W where j=1,2,3,…,n then: 
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j j 1 jd(w |W-{w })= d(w |W-{w }) , and again 

jW-{w }is not a resolving set. 

Thus,  
,( ) | | - 2m nB W m n    . 

Case III. (m or n=1) 

When any one of m or n is 1, the resolving set is 

1 1 n-1W={v ,w ,...,w }. Due to similar reasons as give 

above, we get 
,( )  .m nB n      □

 
               

 The second family of graphs we are interested in is C4,n, 

which is obtained by attaching n pendant vertices to some 

vertex of 
4C , as you can in the figure: 

                
Theorem 2. 

The metric dimension of the graph 
4,nC

 
is n+1. 

Proof. Here we show that the resloving set with minimum 

cardinality is W={1,2,3,…,n, 2v  }. Note that  

    ( | ) (2,2,2,...,2,2,0,2,2,...,2),d i W 

 

for all 1,2,3,..., .i n  Also 

1( | ) (1,1,1,...,1),d v W   

2( | ) (2,2,2,...,2,0),d v W   

3( | ) (3,3,3,...,3,1),d v W   and 

4( | ) (2,2,2,...,2).d v W      

Hence, W is a resolving set. 

If we delete anyone vertex from W, then it does not remains 

a resolving set. For if we delete one of the n vertices from it, 

then 4( | )  ( | )  (2,2,2,...,2 ,2)nd i W d v W  . 

2W-{v }  is also not a resolving set because 

2 4( | )  ( | )  (2,2,2,...,2 )nd v W d v W  . Since W 

has no proper resolving subset, 4( ( )) | | 1C n W n    . □ 

The third family of graphs we discussed is C5,n:    

                            

Theorem 3. The metric dimension of 
5,nC is: 

5,
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n n
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Proof. If n=1, then the resolving set is 3W={1,v } . To 

prove W the resolving set, one can easily prove it by taking 

the distances of all the vertices with W. Take  two proper 

subsets of W,  1 2 3{1}         and          { }W W v  . 

These two sets are not resolving sets because 

3 1 4 1

1 2 5 2

( | ) 3 ( | )  

and  

( | ) 2 ( | )

d v W d v W

d v W d v W

 

 

 

respectively. So, W has no proper resolving subset. Hence, 

5,( ) | | 2     1nC W for n    . 

The resolving set of the 
5, ;  1nC n  , with minimum 

cardinality is 3{1,2,3,..., -1, }W n v . To prove W is a 

resolving set, ( | ) (2,2,2,...,2,2,0,2,2,...,2,3),d i W   

for all 1,2,3,..., 1,i n   where 0 appears at ith place. 

Here   

( | ) (2,2,2,...,2,3),d n W 

1( | ) (1,1,1,....,1,2),d v W    

2( | ) (2,2,2,...,2,1),d v W    

3( | ) (3,3,3,...,3,0),d v W    

4( | ) (2,2,2,...,2),d v W   and 

5( | ) (3,3,3,...,3,1).d v W    

Hence W is a resolving set.  

To prove W is minimum resolving set, we delete any vertex 

from W.  

Case 1. If we first delete the 
thi vertex from W, where 

i=1,2,…,n-1, then  

( | -{ })  ( | -{ })  (2,2,2,...,2,3)d i W i d n W i  . 

Hence, -{ }W i is not a resolving set.  
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Case 1I. Now, we delete 
3v  vertex from the resolving set 

W.  

3 3 5 3( | -{ })  ( | -{ })  (3,3,3,...,3)d v W v d v W v  H

ence, 3-{ }W v is also not a resolving set,which implies 

 5( ( )) | | .C n W n        □
 

The fourth family of graphs we work with is 
3, , , .l m nC   Let 

we have a cyclic graph 
3C  with vertices 

1 2 3, ,v v v . The 

graph 
3, , ,l m nC  is obtained by attaching l pendant vertices 

1,2,3,...,l   with 1,v m pendant vertices 
' ' '1,2 ,3 ,....,m  at 

3 ,v  and n pendant vertices 1",2",3",...,n  at 2.v ( as in 

figure below) 

 
 

Theorem 4. 

The dimension of a graph 
3, , , ,  isl m nC

 

3, , ,

2  ;                              1
( ) 

( -1) ( -1) ( -1)  ;    
l m n

l m n
C

l m n otherwise


  
 

 
 

Proof. 
We make three cases in this proof. 

Case (1): 

If 1l m n    

The set 1l m n     

W={1,2} is a resolving set. to prove W is a resolving set: 

    

1

2

3

    (1| )  (0,3)

    (2 | )  (3,0)

    (3 | )  (3,3)

    ( | )  (1, 2)

    ( | )  (2,1)

    ( | )  (2, 2)

d W

d W

d W

d v W

d v W

d v W










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Hence, W is a resolving set. now! we have to prove that W 

has no proper resolving subset, the proper subsets of W are 

{1} and {2} which are not resolving sets, hence 

3, , ,( ) | | 2         1l m nC W for l m n       

Case (2): 

Anyone of the , ,l m n  is greater than 1, then 

In this case the resolving set W is 

{1,2,3,..., -1,1',2',3',..., ( -1) ',1'',2'',3'',..., ( -1) ''}W l m n

To prove, W is a resolving set, we have 

( | ) (2,2,2,...,2,0,2,...,2,3,3,3,...,3),d i W   for all 

1,2,3,..., 1,i l   where 0 appears at ith place.

 ( | ) (2,2,2,...,2,3,3,3,...,3)d l W    

( ' | ) (3,3,3,...,3,2,2,2,...,2,0,2,...,2,3,3,3,...,3),d i W 

for all 1,2,3,..., 1,i m   where 0 appears at ith place. 

( | ) (3,3,3,...,3,2,2,2,...,2,3,3,3,...,3),d m W   

( "| ) (3,3,3,...,3,2,2,2,...,2,0,2,...,2),d i W    for all 

1,2,3,..., 1,i n   where o appears at ith place. 

1( | ) (1,1,1,....,1,2,2,2,...2),d v W    

2( | ) (2,2,2,...,2,1,1,1,...,1),d v W    

3( | ) (2,2,2,...,2,1,1,1,...,1,2,2,2,...,2).d v W    

Hence W is resolving set. 

It remains to prove minimality of .W  For this for discuss 

following cases. 

Case 1. If we delete any one vertex from W from ,  

1,2,3,..., -1l
 
say i  we have: 

( | -{ }) ( | -{ }).d i W i d l W i
 

Hence { }W i  is not resolving set anymore. 

Case 2. 

If we delete one of vertex from 1',2',3',..., ( -1) 'm  say 'i  

from ,W  we have: 

( ' | -{ '})  ( | -{ '}),d i W i d n W i
 

hence { '}W i  is not resolving set. 

Case 3. 

If we delete any one vertex from 1'',2'',3'',..., ( -1) ''n  say 

"i  from ,W   then: 

    ( "| -{ "})  ( | -{ "})d i W i d m W i  

Hence, W has no proper subset which is a resolving set, 

thus
3, , , ( )  | |   ( -1) ( -1) ( -1);

                                              for     , , 1.

l m nC W l m n

l m n

    


 

The fifth family of graphs we consider is 
4 3C .nC  

This is obtained by joining n copies of 3C  at one vertex of 

4C  as in figure below. 
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Theorem 5. 

The metric dimension of a graph 
4 3C nC   is  n+1. 

Proof. 

The set 
2{1,3,5,7,2 -1, }W n v  is a resolving set, to 

prove W is a resolving set, 

 ( | ) (2,2,2,...,2,1,2...,2,2)d i W  ,  

for 1,3,...,2 1i n  , where 1 appears at ith place.  

 ( | ) (2,2,2,...,2,1,2,...,2,2),d i W    

for 2,4,...,2i n , where 1 appears at ith place.  

1 ( | ) (1,1,1,...,1,1),d v W    

2 ( | ) (2,2,2,...,2,0),d v W   

3 ( | ) (3,3,3,...,3,1),d v W    

4 ( | ) (2,2,2,...,2,2),d v W     

Hence, W is a resolving set. 

Now, it remains to prove that W has no proper subset which 

is a resolving set. For this we consider following cases: 

Case 1. 
We delete any one vertex of W from 1,3,…,2n-1, say vertex 

I is deleted, then the set W-{i} is not a resolving set because 

 ( | -{ })  ( _ 4 | -{ })  (2,2,2,...,2,2)d i w i d v w i 

Case II. 

Now, if we delete vertex 2v  from W, then the set W-{ 2v } 

is again not a resolving set, because 

2 2 4 2 ( | -{ })  ( | -{ })  (2,2,2,...,2.)d v w v d v w v 

Hence W has no proper subset which is a resolving set. 

Since |W|=n+1 therefore, 
4 3( ) 1.nC C n     □ 

The sixth family of graphs is obtained joining 2v   and 4v  of  

4 3C ,nC  we denoted this new family by 
4 3C' .nC  

 

Theorem 6. 

The metric dimension of the graph 
4 3C' nC  is also n+1. 

Proof. 

The prove is similar to the proof of 
4 3C .nC

 
The seventh family of graphs which we discussed is 

5K (2,n) , which is obtained by attaching n pendent vertices 

1,2,3,…,n and one brach having two vertices 
av  and 

bv  at 

any one vertex of 
5K  having vertices 

1 2 3 4 5, , , , ,v v v v v   say 

at 
5.v  As in figure below 

 
Theorem 7. 

The metric dimension of a graph 5K (2,n) , 

   

5

4;      0
( (2, )) 

3;  0.

n
K n

n n



 

 
 

Proof.  

Case 1. (When n=0) Let 2 3 4 5{ , , , },W v v v v  Since 

        

1

2

3

4

5

    ( | )  (1,1,1,1)

    ( | )  (0,1,1,1)

    ( | )  (1,0,1,1)

    ( | )  (1,1,0,1)

    ( | )  (1,1,1,0)

    ( | )  (2, 2, 2,1)

and

    ( | )  (3,3,3, 2)

a

b

d v W

d v W

d v W

d v W

d v W

d v W

d v W















 

Hence, W is the resolving set. To prove that W is minimal 

resolving set, let -{ }iW v
 
be any arbitrary subset of W, 

where iv  can be any one from 2 3 4 5, , ,v v v v  then 

    ( | -{ })  (1| -{ })i i id v W v d W v . 

Hence, W is the resolving set with minimum cardinality, 

hence 5( (2, )) 4         0.K n if n    

 Case 2. (When n>0) In this case, take 

2 3 4{ , , ,1,2,3,..., },W v v v n
 
Since 

 ( | ) (2,2,2,2,2,....,2,0,2,...,2),d i W 

 

for i=1,2,…,n, where 0 appears at the ith place. 
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1 ( | ) (1,1,1,2,2,2,...,2),d v W    

2 ( | ) (0,1,1,2,2,2,...,2),d v W   

3 ( | ) (1,0,1,2,2,2,...,2),d v W    

4 ( | ) (1,1,0,2,2,2,...,2),d v W   

 ( | ) (2,2,2,...,2),ad v W    

and    ( | ) (3,3,3,...,3).bd v W    

Hence W is the resolving set for 
5 nK (a ,b) . 

Now we have to prove that no subset of W is a resolving set. 

When we delete vertex i,(i=,1,2,3…,n), we receive W-{i} 

which is the subset of W, this is not a resolving set because: 

( | -{ })  ( | -{ })  (2,2,2,...,2)d i W i d a W i   

When we delete 
iv  where i=2,3,4, we receive -{ }iW v  

which is not a resolving set, because: 

1( | -{ })  ( | -{ })i i id v W v d v W v  

Hence, W is a resolving set with minimal cardinality, thus: 

5( (2, )) | | 3K n W n      for    n>0. 

The eight family of graphs is 5 nK (a ,b) , which is shown in 

the figure below 

 
Theorem 8. 

The metric dimension of the graph 5 nK (a ,b),  n+3. 

Proof. 
In this family of graphs, the resolving set is 

2 3 4{ , , ,1,2,3,..., }W v v v n
 

because 

1   ( | ) (1,1,1,3,3,3,...,3),d v w 

 

2   ( | ) (0,1,1,3,3,3,...,3),d v w 

  

3   ( | ) (1,0,1,3,3,3,...,3),d v w 

 

4   ( | ) (1,1,0,3,3,3,...,3),d v w 

  

   ( | ) (2,2,2,1,1,1,...,1),ad v w 

  

   ( | ) (3,3,3,2,2,2,...,2),bd v w 

  

 

and 

( | )  (3,3,3,2,2,2,...,2,0,2,...,2),d i w 
 

For i=1,2,3,…,n, where 0 appears at ith place. 

Now we have to show that no other subset of W is a 

resolving set for this, we follow steps. 

For the first step we delete the verrtex iv  from our resolving 

set W then 

1 ( | -{ }) ( | -{ })i i id v W v d v W v  

thus W-{ }iv   is not resolving set. 

Now we remove the vertex i from W where i can be any one 

from the vertices 1,2,3,…,n, then  

( | -{ }) ( | -{ }),ad v W j d j W i  

Thus W is the minimal resolving set 

5( ( , )) | | 3.nK a b W n       □ 
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