
 Sci.Int.(Lahore),27(1),167-171,2014 ISSN 1013-5316; CODEN: SINTE 8 167

Jan.-Feb

TASK SCHEDULING WITH FIREFLY ALGORITHM IN CLOUD COMPUTING
Omid Jafarzadeh-Shirazi

 *1

1* Department of Computer Science & Engineering, Shiraz University, Shiraz, Iran.

*Corresponding author e-mail: ojafarzadehs@cse.shirazu.ac.ir,omid.jafarzadeh1988@gmail.com

 ABSTRACT: Task scheduling problem in cloud computing has become an active research topic due to the tremendous

growth in the use of cloud computing. Cloud computing is a heterogeneous system and it holds and processes large amount

of complex data. Scheduling tasks efficiently can lead to better performance and more throughputs in the system. In this

paper, in order to minimize the cost of processing time, a firefly scheduling algorithm is proposed to schedule tasks in

cloud computing environments. Firefly algorithm is a metaheuristic algorithm, inspired by the flashing behavior of

fireflies. We considered two costs for each task: communication and computation. A comparison is made between

proposed algorithm and particle swarm optimization algorithm in task scheduling. Experimental results show that firefly

task scheduling algorithm is more suitable to cloud computing environments.

Keywords: Firefly algorithm, task scheduling, cloud computing, attractiveness function

1. INTRODUCTION
Cloud computing is the latest distributed computing

paradigm that attracts increasing interests of researchers in

the area of distributed and parallel computing [1], service

oriented computing [2] and software engineering [3].

The new emergence of cloud computing technologies

provides a method to deal with complex applications that

manipulate large amounts of data and need high

performance capabilities. Clouds are a type of parallel and

distributed system, consisting of inter-connected and

virtualized computers. These computers can be

dynamically provisioned as per user's requirements [4].

Berkeley [5] defined cloud as “both the applications

delivered as services over the Internet and the hardware

and systems software in the datacenters that provide those

services”. The software services provided to users have

long been referred to as Software as a Service or SaaS. The

datacenter hardware and software infrastructures are called

a cloud. When a cloud is made available in a pay-as-you-

go manner to the general public, it is called a public cloud.

One of the main challenges in distributed systems,

especially cloud computing systems is task scheduling

challenge. Task scheduling refers to assigning user

requests to underlying resources effectively. Regarding the

fact that the scheduling is known as a NP-hard problem,

many heuristic solutions have been proposed so far to find

a near-optimum solution for the scheduling problem.

In this paper, we propose a task scheduling solution based

on firefly algorithm. Firefly algorithm is a metaheuristic

algorithm, inspired by the flashing behavior of fireflies.

Metaheuristic is a heuristic designed to find, generate,

select searching manner for finding a solution to an

optimization problem. Firefly algorithm has many

advantages such as:

 Its convergence rate is too high.

 Each firefly works individually and finds a better

position for itself in consideration with its current

position as well as the position of other fireflies. Thus,

it escapes from the local optima and finds global

optimum.

 It provides different levels of robustness in comparison

to other metaheuristic algorithms

The remainder of this paper is organized as follows:

Section 2 mentions a set of related works in the area of

task scheduling in cloud. Section 3 discusses the proposed

solution that is based on firefly algorithm. Section 4

presents the experimental results and finally section 5

concludes the paper.

2. RELATED WORKS

Assigning cloud resources to users’ tasks is a key technical

challenge that is called task scheduling. Different methods

have been proposed to schedule tasks on a distributed

system, efficiently. Scholars have proposed FCFS, greedy,

genetic and many other algorithms [6-11] to solve this

problem. T. Kosar et al [12] proposed a scheduler in the

Grid that guarantees task scheduling activities can be

queued, scheduled, monitored and managed in a fault

tolerant manner. J. M. Cope et al, [13] proposed a task

scheduling strategy for urgent computing environments to

guarantee robustness of data. T. Xie [14] proposed an

energy-aware strategy for task scheduling in RAID-

structured storage systems.

Genetic Algorithm (GA) is another suitable approach that

has been used in task scheduling problem in cloud

computing. GAs can solve optimization problems by

iterative evolutions over generations of solutions.

Although GA is more time consuming than list heuristics,

it is acceptable for applications with long runtime. In

addition, the speed of GA can be accelerated by using

parallel GA technologies [15].

R. Bossche et al [16] have proposed a genetic algorithm as

the optimization method for a new scheduler that provides

better makespan and better balanced load across all nodes

in comparison to FIFO and delay scheduling. In 2010, an

optimal scheduling policy based on linear programming to

outsource deadline constraint workloads in a hybrid cloud

scenario was proposed [17]. In 2011, S. Tayal [18]

proposed an algorithm based on Fuzzy-GA optimization

that evaluates the entire group of tasks in a job queue on

basis of prediction of execution time of tasks assigned to

certain processors and makes the scheduling decision.

Wang et al, [19] extend the previous works and propose

the Look-Ahead scheduling algorithm with Reliability-

Driven (RD) reputation. To evaluate the reliability of

resources, RD reputation considers the runtime of tasks by

using the task failure rate (task failures per unit time) of

resources to define the reputation. It also provides a real-

time reputation that can be used to evaluate the reliability

of each task directly using the exponential failure model.

Based on the RD reputation, they propose Look-Ahead

Genetic Algorithm (LAGA) to intelligently optimize both

makespan and reliability for a workflow application.

Another approach to tackle task scheduling problem is

Particle Swarm Optimization (PSO) algorithm. PSO is a

self-adaptive global search based optimization technique

introduced by Kennedy and Eberhart [22]. The algorithm

is similar to other population-based algorithms like GAs

168 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(1),167-171,2014

Jan.-Feb

but, there is no direct re-combination of individuals of the

population.

Zhan, S. B et al, [23] proposed an improved PSO task

scheduling algorithm. PSO algorithm was utilized by

simulated annealing algorithm for faster global

convergence. Guo et al. [24] formulate a model for task

scheduling and also present a PSO algorithm based on

small position value rule.

Salman et al. [25] have shown that the performance of

PSO algorithms are faster than GA in solving static task

assignment problems for homogeneous distributed

computing systems based on their test cases. Lei et al. [26]

have also shown that the PSO algorithm is able to get

better schedule than GA based on their simulated

experiments for Grid computing. In addition, the results

presented by Tasgetiren et al. [27] have provided evidence

that PSO algorithm was able to improve 57 out of 90 best

known solutions provided by other well known algorithms

to solve the sequencing problems.

Ant colony optimization (ACO) is another algorithm that

has been used widely in cloud computing. Zhu et al. [28]

studied resource scheduling problem and also presented an

ant colony optimization based solution for the problem.

Nishant et al. [29] informs readers about ACO algorithm

capabilities and then proposes an ACO-based load

balancing solution for cloud computing network.

3. Proposed Scheduling Solution

In this paper, we propose a firefly-based algorithm to

schedule tasks in cloud computing environments. The rest

of this section introduces the firefly algorithm, then

introduces the proposed algorithm, and finally presents the

evaluation results.

3.1. Firefly Algorithm

Firefly algorithm is a nature-inspired metaheuristic

optimization algorithm. This algorithm has been

implemented in chemistry [30], clustering [31], image

processing [32] etc. Each firefly is considered as a solution

and each one has a flash. Fireflies with less light intensity

will be moved towards fireflies with more light intensities.

This procedure will be continued till expected answer is

reported.

The primary purpose for a firefly’s flash is to act as a

signal system to attract other fireflies. The brightness

should be associated with the objective function. The

objective function is the main function for evaluating

solutions (fireflies). More brightness shows the solution is

more appropriate. Xin-She Yang formulated this firefly

algorithm by assuming that [33]:
 All fireflies are unisexual, so that one firefly will be

attracted to all other fireflies
 Attractiveness is proportional to their brightness, and

for any two fireflies, the less bright one will be
attracted by (and thus move to) the brighter one;
however, the brightness can decrease as their distance
increases

 If there are no fireflies brighter than a given firefly, it
will move randomly

Firefly algorithm starts with random solutions. Depending
on the problem, each firefly is considered as an answer and
contains an array with size of L. These solutions are called

population. Afterwards, fireflies will be evaluated by an
objective function. Fireflies that represent a better solution
look brighter.
The pseudo code of firefly algorithm is described as shown
in Algorithm 1.

1. Generate an initial population of fireflies

2. Formulate light intensity (I) so that it is associated with

objective function (f)

3. Define absorption coefficient γ

4. While (t < MaxGeneration)

4.1 For all fireflies i

4.1.1 For all fireflies j

4.1.1.1 If light intensity of firefly i is greater than

firefly j then,

 Move firefly j to firefly i

 Vary attractiveness with distance (r)

 Evaluate new solutions and update light

intensity

5 Rank fireflies and find the current best

Algorithm 1: The general steps of the firefly algorithm

In the pseudo code presented in Algorithm 1, t shows
iteration in learning cycle and MaxGeneration is the
maximum number that the algorithm is allowed to
continue the learning phase.

3.2. Proposed Scheduling Algorithm
In this section, we will introduce firefly algorithm for task
scheduling in cloud computing. For simplicity in
describing our new firefly algorithm, we considered the
following three idealized rules:

 All fireflies are unisex so that one firefly will be
attracted to other fireflies regardless of their sex

 Attractiveness is proportional to their brightness,
thus for any two flashing fireflies, the less bright
one will move towards the brighter one. The
attractiveness is proportional to the brightness and
they both decrease as their distance increases. If
there is no brighter one than a particular firefly, it
will move randomly.

 The brightness of a firefly is affected or determined
by the landscape of the objective function. For a
maximization problem, the brightness can simply
be proportional to the value of the objective
function.

We modeled the task scheduling problem as a graph where
T= {T1, T2, …, Tn} represents the tasks of an application
and E={Cij} indicates the information exchange between
tasks Ti and Tj. The edge weigh eij between node Ti and Tj
denotes the information exchange between these pair of
tasks. The node weigh wi corresponds to the work capacity
of the node. Figure 1 shows a sample task graph. A task's
processing cost will be varied according to the task’s
assignment to different processors. In this paper, our goal
is how to minimize the communication and the execution
time.
Light intensity shows attractiveness of each firefly.
According to the definition of the firefly algorithm, there
should be an attraction between the fireflies i.e., the tasks.
The attraction is based on the affinity possessed by node to
the request. The attraction is controlled by the decision
parameters defined by the proposed approach. The
proposed approach defines decision parameters for each
node and the parameters are considered as the attributes.

http://en.wikipedia.org/wiki/Xin-she_Yang

 Sci.Int.(Lahore),27(1),167-171,2014 ISSN 1013-5316; CODEN: SINTE 8 169

Jan.-Feb

Figure 1.Task scheduling graph. Cij is cost of information

exchange between node i and j

The nodes attractiveness is measured by equation (1)

()
j

i j

i i i

p
attr n

cpu disk dlink

(1)

where:
 attr(ni)j represents the attraction of task j to

resource i
 cpui is CPU rate of node i
 memi is memory rate of node i
 dlinki is transition rate of node i
 pj represent processing time of task j

We store the parameters of each resource in a table like
Table 1.

Table 1. Information about each resource

Resource CPU Rate Memory Rate

r1 C1 M1

r2 C2 M2

. . .

. . .

rn Cn Mn

The process of selecting the node with least cost is inspired
from the firefly algorithm in such way that, the least
distinct firefly will possess similar characteristics. Inspired
from the theory, we subject a distance calculation between
the nodes in the scheduling queues. Before proceeding to
the calculation, we find the node with least attr(ni) value.
The node with least attr(ni) value is considered as the pivot
point for the queue to calculate the least distinct nodes.
The distance value of the node is calculated based on the
Cartesian distance, which is given by equation (2).

2

1

()
k

i j

i

Dist n n

 (2)

The distance is presented using the expression distance in
which ni is the selected node and nj is the comparing node.
Once all the distance values have been calculated between
the node values, the nodes are rearranged according to the
least distinct node to the pivot node.

4. SIMULATIVE RESULTS
The proposed scheduling algorithm is based on firefly
algorithm and its application is in optimizing task
scheduling in cloud computing. The processing of the
proposed approach is explained in Section 3, now, in this
Section, we show the experimental analysis of the
proposed scheduling algorithm by considering a simulated
cloud network through Cloudsim [22] simulator and java
programming. Cloudsim is a framework for modeling and

simulation of cloud computing infrastructures and
services.
In implementation of firefly task scheduling algorithm in
Cloudsim, the following classes in Cloudsim were
assisted:

 Task class: this class was developed for simulating
the behavior of tasks in cloud computing

 DatacenterBroker class: this class represents a
broker acting on behalf of a user. It hides VM
management.

 VM class: this class represents a virtual machine. It
runs inside a host, sharing host list with other VMs.

 Datacenter class: This class deals with handling of
VMs

Figure (2) shows classes which were developed to
implement the proposed algorithm.

Figure2. Classes which were developed for implementation of

proposed algorithm

FireflyScheduling class consists of functions and
parameters that are related to task scheduling part.
In implementation of the algorithm, we considered
resources with different processing and memory abilities.
So, we developed Processor class which contains of
different processing resources as tabulated in Table 2.

Table 2: Different processor types that are considered in the

Processor class.

Ref. Vendor Processor Model

1. Intel Core_i7_Extreme_Edition_3960X

2. Intel Core_i7_Extreme_Edition_980X

3. Intel Core_2_Extreme_QX9770

4. Intel Core_2_Extreme_X6800

5. Intel Pentium_4_Extreme_Edition

6. AMD FX_8150_Eight_core

7. AMD Phenom_II_X6_1100T

8. AMD Athlon_FX_60_Dual_core

9. AMD Athlon_FX_57

10. AMD E_350_Dual_core

Datacenter Broker class was implemented for the purpose
of encapsulation. This class is responsible for managing
resources and assigning them to each task. Also this class
controls scheduling algorithm as well.
Firefly class was dedicated for implementing behavior of
fireflies in the proposed algorithm.
For evaluation of firefly algorithm, we used NASA Ames
Research Center dataset. This dataset includes the features
tabulated in Table 3.

Table 3: Features of the NASA Ames Research Center

dataset

Ref Attribute Value

1. Record

number

42264

2. Preemption No

3. Start Time Fri Oct 01 00:00:03 PDT 1993

4. End Time Fri Dec 31 23:03:45 PST 1993

5. User Groups Normal & System Personnel

T1

W1

T2

W2

T3

W3

C12

C13 C23

FireflyScheduling Processor

DatacenterBroker Firefly

170 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(1),167-171,2014

Jan.-Feb

Figure 3 below demonstrates the format of the dataset.
In experimental tests, we evaluated our proposed algorithm
with different number of resources. We compared result of
firefly algorithm with particle swarm optimization (PSO)
task scheduler. Table 4 represents the results:

Table 4. Comparison between PSO and proposed algorithm

PSO
(second)

Proposed
algorithm
(second)

Number of
resources

Number of
cloudlets

44.235 40.430 4 89

25.115 22.320 8 89

19.889 17.650 10 89

Figure 3. Format of dataset used in this work

5. CONCLUSION
Task scheduling has been considered as one of crucial
problems in cloud computing. An optimized scheduler
would improve many factors in scheduling of tasks in a
cloud system such as throughput and performance.
Different Approaches have tried to solve this problem like
Genetic algorithm, Ant colony optimization, Particle swarm
optimization and etc. Firefly algorithm is a nature-inspired
metaheuristic optimization algorithm. This algorithm has
been implemented in chemistry, clustering, image
processing. In this paper, we proposed a firefly task
scheduling algorithm in cloud computing. We implemented
proposed algorithm in Cloudsim simulator which is
developed with Java programming language. Also a
comparison between proposed algorithm and particle
swarm optimization algorithm was reported in the paper as
well.

REFERENCES
[1] B. Raghavan, K. Vishwanath, S. Ramabhadran, K.

Yocum, and A. C. Snoeren, “Cloud control with

distributed rate limiting,” ACM SIGCOMM Computer

Communication Review, 37(4), p. 337, (2007).

[2] D. Ardagna and B. Pernici, “Adaptive Service

Composition in Flexible Processes,” IEEE

Transactions on Software Engineering, 33(6), pp.

369–384, (2007).

[3] K. Bhattacharya, M. Bichler, and S. Tai, “ICSE Cloud

09: First international workshop on software

engineering challenges for Cloud Computing,” 31st

International Conference on Software Engineering -

Companion Volume, (2009).

[4] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I.

Brandic, “Cloud computing and emerging IT

platforms: Vision, hype, and reality for delivering

computing as the 5th utility,” Future Generation

Computer Systems, 25(6), pp. 599–616, (2009).

[5] E. Deelman and A. Chervenak, “Data Management

Challenges of Data-Intensive Scientific Workflows,”

Eighth IEEE International Symposium on Cluster

Computing and the Grid (CCGRID) (2008).

[6] B. Xu, C. Zhao, E. Hu, B. Hu, "Job scheduling

algorithm based on Berger model In cloud

environment", Advances in Engineering Software,

42(7), pp.419-425, (2011).

[7] W. Wang, G. Zeng, D. Tang, J. Yao, "Cloud-DLS:

Dynamic trusted scheduling for Cloud computing",

Expert Systems with Applications, 39(3), pp. 2321-

2329, (2012).

[8] D. Cenk Erdil, "Simulating peer-to-peer cloud

resource scheduling", Peer-to-Peer networking and

Applications, 5(3), pp.219-230, (2012).

[9] B. Li, A Meina Song, Junde Song, "A Distributed

QoS-Constraint Task Scheduling Scheme in Cloud

Computing Environment: Model and Algorithm",

Advances in Information Sciences and Service

Sciences, 4(5), pp. 283-291, (2012).

[10] L. Deboosere, Bert Vankeirsbilck, Pieter Simoens,

Filip De Turck, Bart Dhoedt, Piet Demeester,

"Efficient resource management for virtual desktop

cloud computing", The Journal of Supercomputing,

62(2), pp. 741-767, (2012).

[11] S. Abrishami, Mahmoud Naghibzadeh, "Deadline-

constrained workflow scheduling in software as a

service Cloud", Scientia Iranica, 19(3), pp.680-689,

(2012).

[12] T. Kosar and M. Livny, “Stork: making data

placement a first class citizen in the grid,” 24th

International Conference on Distributed Computing

Systems, Proceedings. (2004).

[13] J. M. Cope, N. Trebon, H. M. Tufo, and P. Beckman,

“Robust data placement in urgent computing

environments,” IEEE International Symposium on

Parallel & Distributed Processing, (2009).

[14] T. Xie, “SEA: A Striping-Based Energy-Aware

Strategy for Data Placement in RAID-Structured

Storage Systems,” IEEE Transactions on Computers,

57(6), pp. 748–761, (2008).

[15] D. Lim, Y.-S. Ong, Y. Jin, B. Sendhoff, and B.-S.

Lee, “Efficient Hierarchical Parallel Genetic

Algorithms using Grid computing,” Future

 Sci.Int.(Lahore),27(1),167-171,2014 ISSN 1013-5316; CODEN: SINTE 8 171

Jan.-Feb

Generation Computer Systems, 23(4), pp. 658–670,

(2007).

[16] R. Van den Bossche, K. Vanmechelen, and J.

Broeckhove, “Cost-Optimal Scheduling in Hybrid

IaaS Clouds for Deadline Constrained Workloads,”

IEEE 3rd International Conference on Cloud

Computing, (2010).

[17] Tayal, S."Tasks Scheduling Optimization for the

Cloud Computing Systems‖". In: (IJAEST)

International Journal of Advanced Engineering

Sciences and Technologies, 5(2), pp. 111-115. (2011).

[18] Y. Ge and G. Wei, “GA-Based Task Scheduler for the

Cloud Computing Systems,”, International

Conference on Web Information Systems and Mining

(2010).

[19] X. Wang, C. S. Yeo, R. Buyya, and J. Su,

“Optimizing the makespan and reliability for

workflow applications with reputation and a look-

ahead genetic algorithm,” Future Generation

Computer Systems, 27(8), pp. 1124–1134, (2011).

[20] X. Wang, R. Buyya, J. Su, Reliability-oriented genetic

algorithm for workflow applications using max-min

strategy, in: 9
th

 IEEE International Symposium on

Cluster Computing and theGrid (CCGrid 2009), IEEE

Computer Society: Los Alamitos, CA, USA, Shanghai,

China,(2009).

[21] X. Wang, C. S. Yeo, R. Buyya, J. Su, "Reliability-

driven repu-tation based scheduling for public-

resource computing using ga" IEEE 23rd International

Conference on Advanced Informa-tion Networking

and Applications (AINA 2009), IEEE Com-puter

Society: Los Alamitos, CA, USA, Bradford, UK,

(2009).

[22] Kennedy and R. Eberhart, “Particle swarm

optimization,” Proceedings of ICNN’95 -

International Conference on Neural Networks,

(1995).

[23] Zhan, S. B., and H. Y. Huo. "Improved PSO-based

task scheduling algorithm in cloud

computing." Journal of Information & Computational

Science 9(13) 3821-3829.(2012).

[24] L. Guo, S. Zhao, S. Shen, and C. Jiang, “Task

Scheduling Optimization in Cloud Computing Based

on Heuristic Algorithm,” JNW, 7(3), (2012).

[25] Salman. "Particle swarm optimization for task

assignment problem". Microprocessors and

Microsystems, 26(8):363–371, (2002).

[26] L. Zhang, Y. Chen, R. Sun, S. Jing, and B. Yang." A

task scheduling algorithm based on pso for grid

computing". International Journal of Computational

Intelligence Research, 4(1), (2008).

[27] M. F. Tasgetiren, Y.-C. Liang, M. Sevkli, and G.

Gencyil-maz. "Aparticle swarm optimization

algorithm for make span and total flow time

minimization in the permutation flow shop

sequencing problem". European Journal of

Operational Re-search, 177(3):1930–1947, (2007).

[28] Zhu, Linan, Qingshui Li, and Lingna He. "Study on

cloud computing resource scheduling strategy based

on the ant colony optimization algorithm." IJCSI

International Journal of Computer Science

Issues 9(5). (2012).

[29] K. Nishant, P. Sharma, V. Krishna, C. Gupta, K. P.

Singh, Nitin, and R. Rastogi, “Load Balancing of

Nodes in Cloud Using Ant Colony Optimization,”

UKSim 14th International Conference on Computer

Modelling and Simulation,(2012).

[30] S.-E. K. Fateen, A. Bonilla-Petriciolet, and G. P.

Rangaiah, “Evaluation of Covariance Matrix

Adaptation Evolution Strategy, Shuffled Complex

Evolution and Firefly Algorithms for phase stability,

phase equilibrium and chemical equilibrium

problems,” Chemical Engineering Research and

Design, 90(12), pp. 2051–2071, (2012).

[31] J. Senthilnath, S. N. Omkar, and V. Mani, “Clustering

using firefly algorithm: Performance study,” Swarm

and Evolutionary Computation, 1(3), pp. 164–171.

(2011).

[32] T. Hassanzadeh, H. Vojodi, and F. Mahmoudi, “Non-

linear Grayscale Image Enhancement Based on

Firefly Algorithm,” Swarm, Evolutionary, and

Memetic Computing, pp. 174–181, (2011).

[33] Y., Xin‐She. "Firefly algorithm." Engineering

Optimization 221-230. (2010).

