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ABSTRACT: Bioinformatics is becoming more and more popular in biology and biotechnology community. Applications of 

bioinformatics in amplification of DNA by PCR, predicting the correct boundaries of a gene by gene homology or prediction 

method, and for post sequencing steps in DNA studies like DNA mapping and assembly to construct a complete genome with 

repetition or missing the sequences, promoter analysis to check the expression level of a gene by analyzing TFBS, evolutionary 

analysis by phylogeny reconstruction, different genetic markers selection and their use in forensic science are the most popular 

and useful in DNA studies and research. In this review paper, applications of above mentioned bioinformatics application in 

DNA studies, online availability and efficiency of computational algorithms in the bioinformatics and reliability of 

bioinformatics’ tool is considered. 
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I. INTRODUCTION 
 Bioinformatics is the blended form of two fields; biology and 

informatics. Major initiative for the creation of bioinformatics 

was the need to store biological information at beginning of 

“genomic revolution”. Foundation stone of bioinformatics 

was laid in 1970 when the Needleman-Wunsch algorithm was 

created for amino acid sequences of two proteins. Hogeweg 

in 1979 named this new discipline “bioinformatics”. Main 

focus of this discipline has been the development of tools for 

data management and analysis. By definition ‘any application 

of computation to the field of molecular biology, including 

data management, algorithm development, and data mining is 

bioinformatics’. This discipline includes the use of tools and 

techniques from three distinct disciplines; molecular biology, 

computer science and the statistics. Traditionally the 

knowledge base in biology has resided within the heads of 

experienced biologists. This approach worked well when the 

amount of data was not so great. However, this situation has 

changed - many complete genomes are appearing each year 

and new experiments providing information in molecular 

biology. For example, one experiment can now produce data 

on the transcription level of 100,000 different mRNA types. 

Therefore, there is a need to establish systems that can apply 

this data to get information. It is not said that such systems 

could replace human experts; however, they could play a 

crucial role in filtering the flood of data to the point where 

human can easily handle this. This then raises many 

questions, in particular regarding how biological concepts 

and their relationships can be rendered in ways that make 

them computationally tractable. 

 

II. GENE PREDICTION 

While the sequences of genomes of various organisms have 

been determined over the last some years, converting such 

raw sequence data into knowledge remains a hard task. So 

gene prediction is one of the most important problems in 

computational biology [1]. Once the genome of a species has 

been sequenced, gene finding is one of the first and most 

important steps in understanding the genome function [2]. 

Also before analyzing the gene, one should have the correct 

and accurate coding sequence of that gene first. Gene finding 

in a genome is called gene prediction [3]. Finding genes in 

prokaryotes is an easier problem than in eukaryotes due to 

absence of introns and smaller the intergenic regions [4]. The 

widely used and recognized bioinformatics approaches for 

genome annotation are homology methods and gene 

prediction. Approximately 50% of the total genes can be 

found by homology to the other known genes or protein. 

Indeed approximately half of the genes can be found by 

homology to other known genes. In order to determine the 

50% of remaining genes, the only solution is to turn to 

fastand accurate predictive methods [8]. Gene prediction 

methods require exonic and intronic regions of protein 

models or from huge quantities of unknown DNA sequence 

from different species [9]. To solve the gene prediction 

problem by homology based gene finding we align the 

genomic sequence, which is to be predicted, with similar 

sequences present in database and select the best matched 

sequences. With this information we can infer the possible 

gene boundaries by comparing with best aligned genes in the 

database [10]. In Metagenomic samples, many genes are 

identified by the process called homology to find genes by 

paying Basic local alignment search tool or BLAST [11]. 

Number of bioinformatics tools have been developed and 

employed for gene prediction and annotation of genomic 

sequences from single prokaryotic species such as 

GLIMMER and GeneMark [12,13]. CONTRAST uses the 

term phylogeny-free method to numerous in formatives de 

novo gene calculations. In this, a two-stage approach is used; 

designing of a set of two identifier to identify exonic region 

margins is collected with a worldwide exemplary of gene 

configuration. DIFFERENCE forecasts strict exonic region 

assemblies for 65% more human genes than the earlier 

approaches [14]. These gene prediction watch for 5’-

upstream UTR, 3’- downstream, promoter region, TATA box 

and other cis-regulatory factor to determine the exact location 

of gene. Accuracy of predicting a gene depends upon the 

length of DNA sequences, larger the DNA sequence more 

inaccurate prediction will be and vice versa. Because of 

decline in gene concentration and the occurrence of huge non 

coding regions, gene prediction software is programmed for 

specific species such as Gene finder, a gene prediction 

program optimized for performance in C. elegans genomic 

sequences. It works best for C. elegans but not efficient for 

other species, so selection of software needs your more 

attention [15]. Some of the leading software’s, currently used 
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for gene prediction; include GeneMark, TWINSCAN, and 

mGene, GENSCAN, ExoniPhy, ExonHunter and Glimmer. 

 

III.    PCR AND PRIMER DESIGNING 

PCR is the basic technique to amplify a DNA fragment for 

various reasons e.g. cloning, checking Short Tandem Repeats 

(STRs), Single Nucleotide Polymorphism (SNP),  parentage 

identification and genetic mutation. The development of the 

PCR has often been linked to the development of the Internet. 

Both inventions have emerged in the last 20 years to the point 

where it is difficult to imagine life without them [16]. Major 

components of the PCR are the Taq polymerase enzyme, 

DNA template, primers, and the PCR machine (Thermo 

cycler) which maintains the optimum temperature for each 

step in every cycle [17]. For a specific PCR amplification, 

one must know the exact nucleotide sequences which lie on 

either side of the region of interest in DNA. These sequences 

are used to design two synthetic DNA oligonucleotides 

(primers) each one complementary to the 5’ end of the two 

strands. The primers are typically 20–30 nucleotides long 

[18]. The use of specific primers for PCRs intensification of 

identified or unidentified gene families was first stated about 

a period of ten years ago and has been generally adopted [19]. 

There are several classes of primers, including gene specific, 

SSR specific (Simple sequence repeats), SNP genotyping 

primers and DNA sequencing primers [20]. Primers are best 

designed through bioinformatics’ tools. In order to design a 

good primer several parameters need to be considered such as 

product size, melting temperature (Tm), GC content, primer 

length, 3' end stability, self-complementarity, dimer 

possibility and position constraints [20]. Main problems 

encountered after primer designing are; failure of PCR 

products or due to mis pairing of primers. One should have 

the genomic data moreover the mark DNA sequence, this 

genomic information include repetitive DNA elements, 

protein coding and non-coding boundaries, and SNPs, these 

are achieved from different  databases to get a best optimized 

primer. Then these all information is collected to form 

template sequence of primer designing. [21]. UniPrime2 is 

efficient software, it works by automatically retrieving and 

aligning homologous sequences from GenBank, identifying 

regions of conservation within the alignment, and generating 

suitable primers that can be used to amplify variable genomic 

regions. Some of the leading bioinformatics tools available 

for primer designing are Primer Design Pipeline, Primer3, 

Primer3Plus, RExPrimer, BatchPrimer3 and UniPrime2. 

Primer Design, Primer3 and Primer3Plus calculate melting 

temperature(Tm) by nearest neighbor thermodynamic theory 

and string-based alignment scores to estimate 

complementarity to pick the best optimum primers [23]. REx 

Primer uses Primer3 algorithm as core program but it 

annotated to numerous databases like SNP databases and 

pseudo gene database. These connected databases allow this 

program to avoid mis-priming problem [21]. BatchPrimer3 is 

very efficient for designing sequencing primer. It also uses 

Primer3 as its core program to compute primer sequence 

[20,22,24]. 

 

IV.    DNA MAPPING AND ASSEMBLY 

DNA mapping is a significant diagnostic method in different 

fields of medical, to identify the genomic sequence and 

pathogenicity of different microbes.[25]. DNA mapping is 

widely used strategy to study structures and organizations of 

genomes [26]. Genome assembly refers to the process of 

taking a large number of short DNA sequences, all of which 

generated by a shotgun sequencing project and putting them 

back together to create a representation of the original 

chromosomes from which the DNA originated [27]. Growing 

interest in comparative genomics has created a need for 

technologies that can rapidly and efficiently characterize a 

genome, particularly larger genomes. DNA is assembled by 

keeping mapping information of the DNA. Genome mapping 

depends on sequence of the genomes to deliver elementary 

resources, these materials include DNA probes and localized 

marker for identification of DNA probes, all these 

information then built the genomic maps. A big resolution 

map plays an important role for the construction of complete 

genome association. If someone wants to know the benefits 

and applications of this method, he should has the knowledge 

of structure and function of DNA and genes, about codons 

and anticodons and all the factors that are very important in 

gene expressions.[28]. Gel electrophoresis has been widely 

used for detection of sequence motifs for the Human Genome 

Project [29]. The HAPPY mapping technique (Haploid DNA 

samples that are amplified by the PCR) depends onaccidental 

DNA splintering and resolving  of connection, optical 

mapping for relatively small genomes, up to 400 Mb so far, 

Direct Linear Analysis (DLA) based on the analysis of 

individual DNA molecules bound with sequence-specific 

fluorescent tags [26,30,31]. Complex genomes contain many 

repetitive sequences that make it tougher to assemble the 

reads into the core sequence. Bioinformatics is involved 

deeply in DNA mapping and assembly. An important step of 

the assembly process is to generate a set of read-read 

alignments i.e. aligning sequenced nucleotides for checking 

the structural matches and mismatches. If we generate only 

true alignments in this step,then we could produce the 

optimal assembly of the sequence data. Today, sequencing 

and assembly methodologies can be applied to entire 

mammalian genomes by the virtue of bioinformatics [32]. 

Computer assisted assembly process starts by building a de-

novo assembly from the reads and at the same time aligning 

the same reads to related genomes. Most of the DNA 

assemblers use anoverlap–layout–consensus computational 

framework to generate an assembly [33]. More accurately, 

assembler computational algorithms track this rout: placing 

reads on a reference genome, grouping reads, enlarging 

consigns, joining scaffolds, correcting misassembles, and 

smoothing the assembly [34]. Minimums, a small 

bioinformatics algorithm, perform well on several small 

assembly tasks, including the assembly of viral genomes, 

individual genes, and BAC (Bacterial Artificial 

Chromosome) clones [35]. Some commonly used 

bioinformatics tools for genome assembly are Celera 

assembler, ARACHNE and Eulerian[36-38]. 

 

V.    PHYLOGENY RECONSTRUCTION 

Phylogeny reconstruction involves incorporation of DNA or 

protein sequences from modern organisms into an 
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evolutionary model to estimate the corresponding sequence 

of an ancestor that no longer exists [39]. Phylogenies are 

extremely useful tools, not only for establishing genealogical 

relationships among a group of organisms or their parts (e.g. 

genes), but also for a variety of research once the phylogenies 

are estimated. Number of uses for phylogenetic information 

are there among them discovery of drug resistance to 

reconstructing the common ancestor to all of life is of peak 

importance [40]. Development of this technique is based 

upon genomic sequences being known and recent advances in 

DNA synthesis [41]. Estimating the sequence of an ancestor 

generally involve two methods, the parsimony and maximum 

likelihood estimation (MLE) [42]. MLE is used for fitting a 

statistical model to data, and providing estimates for the 

model's parameters. While parsimony method is a non-

parametric statistical model commonly applied in 

computational phylogenetic toestimate phylogenies. 

Nowadays, quartet-based phylogeny reconstruction methods 

i.e. building a local phylogeny for every subset of 4 species, 

have acknowledged significant attentions in the 

bioinformatics community. The accuracy of a phylogeny 

reconstruction method is measured by simulations on 

synthetic datasets with known true phylogenies [43]. 

Currently, all computer algorithms for solving these problems 

are heuristics without performance guarantee. As a result 

drawing the phylogenetic tree is not a trivial task since it is 

not possible to know the exact evolutionary history for a set 

of organisms [44]. The biological importance of these 

problems calls for developing better algorithms with 

assurance of finding either optimal or approximate solutions 

[45].  Existing phylogeny reconstruction methods tends to 

calculate the true phylogeny in one of the two ways: by an 

explicit algorithm that leads to the determination of a 

phylogeny or by defining a measurement for the quality of 

generated phylogenies and searching for an optimal 

phylogeny [43]. Multiple sequence alignment or MSA is a 

sequence alignment of three or more biological sequences, 

generally nucleotide (DNA or RNA) or peptide (protein) 

sequences. In many cases, the input set of query sequences is 

assumed to have an evolutionary relationship by which they 

share a common lineage. From the resulting MSA, sequence 

homology can be inferred and phylogenetic analysis can be 

conducted to assess the sequences' shared evolutionary 

origins. Results of MSA can be best viewed and interpreted 

by using PFAAT or CINEMA software’s. They actually add 

some color schemes like shading, navigation schemes 

through results by selecting specific column and rows and 

curationi.e. adding biochemical factor to the mathematically 

produced result, to the result [46]. But MSA result may 

contain errors if the input sequences are very different or 

diverge, otherwise for relatively less diverge sequences. 

ClustalW, the most common software for multiple sequence 

alignment, is used for aligning promoter sequences and 

BaseML from the Paml package used for ancestral sequence 

reconstruction [47]. Other bioinformatics tools being used 

extensively are BATWING BEAST, Geneious, MOLPHY 

(Molecular phylogenetic based upon protein or nucleotide) 

and PhyloQuart. 

 

VI.   BIOINFORMATICS APPLICATIONS IN 

PROMOTER ANALYSIS  

Promoter is present upstream of the transcription start site 

(TSS) that helps in of transcription initiation and it is a cis-

acting element. [48]. Gene expression depends on the 

interaction between transcription factors and cis-acting 

sequence elements in transcriptional regulation (promoter) 

regions [49]. Core and Proximal promoter are the main 

groups of promoter. Core promoter is found adjacent to TSS, 

while proximal promoter finds its place one or more kb 

upstream of the gene. Accurate discovery of these 

fundamentals is a precondition to decoding the multi-faceted 

controlling systems that helps in different protein gene 

expression patterns like tissue specific and lineage 

specific[8]. Transcription factor binding sites (TFBS) range 

from 6 to 12 base pairs, these are progressive sequences, due 

to this reason, the promoter cannot detect TFBSincomplex 

DNA sequence [50]. Gene sequence, gene expression, and 

binding data are used to develop the predicting tools for 

transcription regulating cites [51]. Most of the algorithms 

used in bioinformatics for promoter analysis use cross-

species comparison to screen TFBS calculations and to 

recognize possibly active controlling essentials, these 

controlling essentials are  ConSite and rVista 2.0 [52,53]. 

This phylogenetic foot printing method includes CONREAL 

and Footer is webs based and are used in gene predictions 

studies. [54,55]. Osteopromoter Database (OPD) is an 

innovative promoter database that has many different of 

genes that arbitrate osteoblast cells in propagation and 

distinction of the cells. InOPD, the genes and promoters are 

presented; these are retrieved from the PUBMED, different 

bibliographic reference databases and complementary DNA 

sequences hubs. This data is prepared in alphabetical order 

and have cross-references with other new or old databases 

[48].For promoter analysis,PromAn is used that is web based 

software. PromAn delivers computerized exploration of 

genomic areas with slight previous information of the 

genomic sequence. Prophecy and experimental catalogs are 

joined together to localize the promoter site within a large 

genomic input sequence [50]. Other promoter site databases 

are also available such as DBTSS (Database of 

Transcriptional Start Sites) and EPD (Eukaryotic Promoter 

Database) [56,57]. In future the software’s and databases 

designed for promoter prediction will also incorporate tissue-

specific, transcriptomic and interatomic data comparative to 

transcription factors to put in new filtration methods to 

improve the TFBS. These filtration methods are used to help 

the users to access regulatory motifs and modules to express 

the transcription factors interacting. [50]. Presence of 

multiple TSS’s often induces limitation into the result of 

promoter prediction software’s. But results of software can be 

benchmarked by comparing them against the promoter 

present in EPD [58].  Other efficient software’s being used to 

locate the promoter region are Dragon Promoter Finder, 

Eponine Transcription Start Site finder, NNPP, Promoter 

Prediction are Regulatory Sequence Analysis Tools. 

 
VII.    SEQUENCE FEATURES DETECTION 

Finding location of features in nucleotide sequences is one of 

the most common tasks in sequence data analysis [59]. The 
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identification of features in large and complex datasets is an 

important step towards gaining insight in the processes 

underlying the data and extracting knowledge from complex 

biological data [60]. A feature is a sequence pattern with 

some functional significance, such as start and stop codon, 

splice sites, and sequences that are recognized by protein in 

order to regulate gene expression [61].Several DNA features 

have been discovered and the list is still being populated as 

the research is going on. Some of them are listed in table 1. 

The borders between introns and exons are termed as splice 

sites [63]. A range of computational methods have been 

developed for detecting splice site and other features. These 

computational methods can be grouped into different 

categories, which include probabilistic approaches, the neural 

network, the support vector machine approaches, and the 

methods based on discriminate analysis and the information 

theoretic approaches [64-67]. There are more than 150 

Bioinformatics software are present to identified the 

regulatory bindings sites.[68]. As input, these algorithms e.g. 

Features canneedtwo sequences, a patternofsequence and a 

sequence target. Explore setting are put by selecting a definite 

DNA factors and anentrancerate. These outcomes are showed 

in FASTA format. ENSEMBL, National Centre for 

Biotechnology Information (NCBI) and University of 

California, Santa Cruz (UCSC) are used as the external 

databases [62]. Many different strategies have been 

developed and still developing with their own limitation and 

advantages. To customize the multiple methods into one 

method, BEST and EMD two methods are adopted to benefit 

the bioinformatics communities.  [69,70]. Techniques that 

incorporate further sources of information have also made 

recently. Such as PhyloGibbs, PhyME, and 

WeederHlinkjointly sequences from controlling regions of 

linked organisms [71-73]. Other software programs being 

used in bioinformatics to identify sequence feature detection 

are MotifViz, ORF Finder, POBO, PredictRegulon, 

RepeatMasker, rVista, TRANSFAC (database on eukaryotic 

transcriptional regulation), Web Weeder and SeqVISTA. 

MotifViz uses three motif discovery programs, Clover, Rover 

and Motifish, covering most available algorithms for 

detecting motifs OR tool identifies all open reading frames 

using the standard or alternative genetic codes. POBO uses 

bootstrap analysis to detect significantly over- or 

underrepresented promoter regions. PredictRegulon, a web 

server, constructs the binding site recognition profile based 

on ungapped MSA of known binding sites to detect the 

operons and protein binding cites in prokaryotic genomes 

 Repeat Masker screens DNA sequences for interspersed 

repeats and low complexity DNA sequences by sequence 

comparison through cross match, RMBlast and Decypher. 

The rVistaand Web Weedertool combines sequence 

comparisons, TFBS predictions and cluster analysis to 

identify junk and noncoding DNA regions that are conserved 

evolutionarily.SeqVISTApresent a graphical view of different 

features detected by different tools. It display results from 

different sequence analysis tools in an integrated style and 

aims to provide unity to the bioinformatics resources present 

on internet. 

VIII.    SEQUENCE POLYMORPHISMS 

The genomes of individuals from the same species vary in 

nucleotide sequence as a result of different evolutionary 

processes known as sequence polymorphism. Examining the 

patterns of sequence polymorphism is called sequence 

polymorphism analysis [74]. There are different methods that 

are used in Polymorphism sequence like DNA sequencing, 

restriction fragment length polymorphism (RFLP), single 

strand conformation polymorphism (SSCP), randomly 

amplified polymorphic DNA (RAPD) and amplified fragment 

length polymorphism (AFLP) [75-78].Single nucleotide 

polymorphisms (SNPs) are widely used in natural 

populations studies now a day’s[79]. Parallel sequencing 

(sequencing multiple target polynucleotide motifs in a 

sample) technologies have turned into significant and 

commonly used methods in the study of polymorphisms 

sequence on 

genome-wide level [80].Researchers generate large amount of 

sequence data with the help of high throughput technology, 

with the help of this technology, the whole genome 

sequencing is used to find the polymorphism sequence as 

well as phenotypic consequences. With the advancement of 

modified software to predict data created by these 

technologies has lagged behind [81]. One commonly used 

bioinformatics tool for the detection of sequence 

polymorphism is Smith-Waterman algorithm. Smith-

Waterman algorithm gives the best results but it takes much 

time due to the number of computations required for the 

search [82]. DNA sequencing platform“Illumina”can now 

produce about 100 million sequence reads of up to 75-nt 

every in a one run [81].“Galign”, a web based algorithm is 

used to find polymorphisms between sequence retrieved by 

Illumina technology [83]. We do not use Smith-Waterman 

algorithm in galign alignment method for sequence analysis. 

Instead of Smith-Waterman algorithm, we use simple 

algorithm to read the parse sequence. 

The galign method gives us polymorphism location, 

nucleotide alterations and amino acid changes.[81]. Multiple 

methods have been developed for SNP prediction and 

filtering, such as GMAP and Maq mapping software [84-86]. 

A database has also been developed and publically available 

for sequence polymorphism known as Polymorphic [87]. 

 
 



Sci.Int.(Lahore),27(1),333-341,2015 ISSN 1013-5316; CODEN: SINTE 8 337 

 

 

 

Table (1): Nucleic Acid Features  

Feature name Briefing 

1. LTR Long Terminal Repeat is a sequence that is directly repeated at both ends of a definite 

sequence. 

2. Enhancer A cis-acting sequence rises the process of eukaryotic promoters 

3. GC signal GC box is a preserved GC-rich region sited upstream of the start end of eukaryotic 
transcription sites. 

4. -35 signal Itis a preservedhexameraround 35 bps upstream of the start end of bacterial transcription 

point. 

5. CAAT signal CAAT box; piece of a conserved DNA sequence located about 75 bp up-stream of the 

starting point of eukaryotic transcription units which may be involved in RNA polymerase 
binding 

6. N_region Extra nucleotides inserted between rearranged antibody coding DNA segments 

7. N_region  Codes for the variable amino terminal part of an antibody 

8. sig_peptide Signal peptide coding sequence 

9. primer_bind Non-covalent primer binding site for initiation of transcription, or reverse transcription 

10. promoter Region on a DNA molecule where RNA polymerase bind 

11. rep_origin Starting site for duplication of nucleic acid to give two duplicates 

12. TATA signal TATA box is a conserved AT-rich septamer found about 25 bps before the start point of 

each eukaryotic gene feature 

13. repeat region Region of genome containing repeating segments 

14. STR  Short tandem repeat 

 

IX.   SEQUENCE RETRIEVAL AND SUBMISSION 

It is becoming gradually popular for research individuals to 

interchange new biological data and update new sequences by 

directly uploading the data on the Web based databases. 

GenBank is a comprehensive database that contains publicly 

available nucleotide sequences for more than   1000 

organisms (http://www.ncbi.nlm.nih.gov/guide/all/), obtained 

primarily through submissions from individual laboratories 

and batch submissions from large-scale sequencing projects, 

including WGS and environmental sampling projects 

[88].Daily data exchange with the European Molecular 

Biology Laboratory (EMBL), Nucleotide Sequence Database 

in Europe and the DNA Data Bank of Japan ensures 

worldwide submission and retrieval [89,90].A repository of 

primary nucleotide sequences is an essential requirement for 

computational analysis and genome research. “Webin” has 

been designed to allow rapid submission of single, multiple 

or very large numbers of sequences (bulk submissions) at 

EMBL and is available 

athttp://www.ebi.ac.uk/embl/Submission/webin.html.GenBan

k is a quite useful repository service provided by NCBI is 

GenBank. All findings records are entered in GenBank by 

direct electronic submissions 

(www.ncbi.nlm.nih.gov/Genbank/index.html), with the 

majority of authors using BankIt or Sequin programs. Bankit 

is used when the data, which is to be submitted, is a single 

sequence, a simple set of sequences or a small batch of 

different sequences but Sequin is applied when complex 

submissions are to be made containing long sequences, 

multiple annotations, or phylogenetic and population studies 

[88]. The sequences and biological annotations in GenBank, 

and the collaborating databases EMBL and DDBJ, are 

submitted primarily by individual authors to one of the three 

databases, in the categories of EST (Expressed sequence 

tags), STS (Sequence-tagged sites), GSS (genome survey 

sequences), HTC (High-throughput genomic) and WGS 

(Whole genome shotgun sequence).GenBank personnel gives 

an accession number to a sequence submission. That is shared 

between the three large collaborating databases GenBank, 

DDBJ (DNA Data Bank of Japan) and EMBL (European 

Molecular Biology Laboratory) and remains same over the 

lifetime of the record. The accession number serves as a 

citation reference. [91].the sequence records in GenBank are 

accessible through Entrez (www.ncbi.nlm.nih.gov/Entrez/),an 

excellent database retrieval system that covers over 30 

biological databases [92]. The user can retrieve the nucleotide 

sequence through different references such as getting 

sequence records with respect to the sequencing projects and 

BLAST search [93]. The EMBL SRS server maintains a 

comprehensive collection of specialized databanks along with 

the main nucleotide and protein databases [94]. User can 

search the sequence by similarity method or individual 

taxonomic division [95]. The most commonly used 

computational algorithms for sequence retrieval are FASTA 

and WU-BLAST [96,97].  Other than these, bioinformatics 

tools being used commonly in sequence retrieval and 

submission are Alias Server, EMBOSS, Gene Lynx, 

SeqHound, Sequin, Gene Lynx and PubCrawler. 

 

X.    FORENSIC BIOINFORMATICS 

The science of DNA-based human identification is known as 

forensics [98].Human recognition depends on specific 

properties like DNA evidence, blood sample, saliva sample, 

etc.DNA is the most reliable source of human identification 

due to its genetic differences that are expressed or 

unexpressed DNA sequences can be used as markers to 

differentiate between individuals [99]. Bioinformatics and 

DNA based forensic methods are inter disciplinary and 

http://www.ncbi.nlm.nih.gov/Genbank/index.html
http://www.ncbi.nlm.nih.gov/Entrez/
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illustrate their methods from figures and computer sciences, 

while, computational forensics (CF) integrates expertise from 

computational science and forensic sciences which is based 

upon computer-based modeling, simulation, analysis, and 

recognition in studying and solving problems posed in 

various forensic disciplines [100]. Now days, STR markers 

are used for the identification of criminals using 13-17 

nuclear STR markers. These markers are made by the 

Combined DNA Index System (CODIS)[101]. Orchid 

Biosciences has pioneered relatively new forensic method. In 

this method personal identification is based upon Single 

Nucleotide Polymorphisms [SNPs][102]. A bioinformatician 

can determine haplotypes by using different bioinformatics 

algorithm, such as Haploview, on sequence data [103]. 

Another facility provided by bioinformatics to forensic 

sciences is the establishment of STR databases which 

facilitate the estimation of the probability of matching or 

mismatching of two DNA profiles [99]. One of the most 

popular STR database is ENFSI DNA WG STR Population 

Database (http://www.str-base.org/index.php). Bioinformatics 

also help in mass disaster identification in which we have to 

identify parent-child relationship and other kinships like that. 

There are some potential drawbacks of using computational 

programs as error in comparing sequences for culprit 

identification may wrongly accuse an innocent. Commonly 

used software’s on this front are Mass Disaster Kinship 

Analysis Program (MDKAP) and Mass Fatality Identification 

System (M-FYSis) [104]. Bayesian network, application of 

bioinformatics, is being used for statistical inference on the 

DNA data produced during process of analysis [105].  

 

XI. CONCLUSION:  IS BIOINFORMATIC ANALYSIS 

RELIABLE? 

Bioinformatics software’s are built on the bases of statistical 

and computational principles. Although they are given with 

good biological learning but sometimes results of a biological 

phenomenon or reaction differ a lot from set statistical rules. 

That is why results produced from computational tools should 

be taken with caution. For example in phylogeny 

reconstruction, ClustalW reconstructed alignments are highly 

uncertain in their details. Only very closely related sequences 

can produce accurate alignments by bootstrap method, while 

many sequence sets of biological interest are expected to 

produce reconstructed alignments with error in more than half 

of their aligned columns. This method does not gives accurate 

phylogenetic tree but it only gives information about the 

stability of the tree topology (the branching order), and it 

helps assess whether the sequence data is adequate to validate 

the topology [106]. But due to the upcoming programs and 

benchmarks e.g. PREFAB results are flattering gradually 

more consistent, but they do predict only.  
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