CARISTI MAPPING IN MULTIPLICATIVE METRIC SPACES

Muhammad Usman Ali

Department of Mathematics, School of Natural Sciences,

National University of Sciences and Technology H-12, Islamabad Pakistan.

Email: muh_usman_ali@yahoo.com

ABSTRACT: The purpose of this paper is to define Caristi mapping in the setting of multiplicative metric space and prove fixed point theorems on multiplicative metric space endowed with a graph.

Key words and phrases. *Multiplicative metric space; Caristi mappings*. **2010 Mathematics Subject Classification.** 47H10, 54H25.

1 INTRODUCTION

Let (X, d) be a

metric space. A mapping $T : X \to X$ is said to be a Caristi mapping, [1] if there exists lower semi continuous function ξ : $X \to [0,\infty)$ satisfying $d(x,Tx) \leq \xi(x)-\xi(Tx)$ for each $x \in X$. Note that that each Caristi mapping on a complete metric space has a fixed point. Kirk [2] proved that the metric space (*X*, *d*) is complete if and only if each Caristi mapping on (*X*, *d*) has a fixed point.

Jachymaski [3] introduced the notion of Banach *G*contraction and proved some fixed point theorems for mappings satisfying this notion on complete metric space with a graph. Several authors appreciated this novel work and proved several results on metric space with a graph see for example: [4-13].

Grossman and Katz [14] developed the new calculus called multiplicative (or non-Newtonian) calculus. Due to this calculus, Bashirov *et al.* [15] introduced the notion of multiplicative metric. That is, a mapping $m : X \times X \rightarrow [1,\infty)$ is called a multiplicative metric [15] on a nonempty set X if for each x, y, $z \in X$, m satisfies these conditions: $(m_1): m(x, y) > 1$ for all x, $y \in X$ and m(x, y) = 1 if and only if x = y; $(m_2): m(x, y) = m(y, x)$ for all x, $y \in X$; $(m_3): m(x, z) \le m(x, y) \cdot m(y, z)$ for all $x, y, z \in X$.

Ozavsar and Cevikel [16] investigated the multiplicative metric spaces along with its topo-

logical properties, few of them are given below:

Let (X, m) is a multiplicative metric space. A sequence $\{x_n\}$ is said to be a multiplicative convergent to $x \in X$ denoted by x_n $\rightarrow^m x$, if for each $\varepsilon > 1$, there exists some $n_0 \in \mathbb{N}$ such that $m(x_n, x) < \varepsilon$ for each $n \ge n_0$. A sequence $\{x_n\}$ is said to be a multiplicative Cauchy, if for each $\varepsilon > 1$, there exists $n_0 \in \mathbb{N}$ such that $m(x_m, x_n) \le \varepsilon$ for each $m, n \ge n_0$. A multiplicative metric space (X, m) is complete if every multiplicative Cauchy sequence in it is multiplicative convergent to some $x \in X$, [16].

Lemma 1.1. [16] Let (X, m) is a multiplicative metric space and $\{x_n\}$ is a sequence in X such that $x_n \to^m x$ and $x_n \to^m y$, then x = y.

In this paper, we extend the Caristi mapping in the setting of a multiplicative metric space. We prove fixed point theorems for such mappings on multiplicative metric space endowed with a graph G. We also construct an example to support our result.

2 MAIN RESULTS

Throughout this section, we assume that (X, m) is a multiplicative metric space and G = (V, E) is a directed graph such that V = X, $\{(x, x): x \in V\} \subset E$ and G has no parallel edges.

Theorem 2.1. Let (X, m) be a complete multiplicative metric space endowed with the graph *G*. Let $T: X \to X$ be an edge preserving mapping such that for each $(x, Tx) \in E$, we have

$$m(x,Tx) \le \frac{\xi(x)}{\xi(Tx)} \tag{2.1}$$

where $\xi : X \to [1,\infty)$ be any function. Further, assume that the following conditions hold:

(i) there exists $x_0 \in X$ such that $(x_0, Tx_0) \in E$;

(ii) *T* is *G*-continuous with respect to *m*, that is, $Tx_n \rightarrow^m Tx$ whenever, $x_n \rightarrow^m x$ and $(x_n, x_{n+1}) \in E$ for each $n \in N$. Then *T* has a fixed point.

Proof. By hypothesis (i), we have $x_0 \in X$ such that $(x_0, x_1) \in E$, where $x_1 = Tx_0$. From (2.1), we have

$$m(x_0, x_1) \le \frac{\xi(x_0)}{\xi(x_1)}$$

Since *T* is edge preserving mapping, then $(x_1, x_2) \in E$. Again from (2.1), we have

$$m(x_1, x_2) \le \frac{\xi(x_1)}{\xi(x_2)}$$

Continuing in the same way we get a sequence $\{x_n\}$ in X such that $(x_n, x_{n+1}) \in E$ and

$$m(x_n, x_{n+1}) \le \frac{\xi(x_n)}{\xi(x_{n+1})}$$

This implies that the sequence $\{\xi(x_n)\}$ for each $n \in \mathbb{N}$. (2.2) This implies that the sequence $\{\xi(x_n)\}$ is a nonincreasing sequence, which is bounded below by one, there exists $r \ge 1$ such that $\xi(x_n) \to^m r$. Now consider $m, n \in \mathbb{N}$, by using the multiplicative triangular inequality, we have

$$m(x_{n}, x_{m+n}) \leq \prod_{i=n}^{n+m-1} m(x_{i}, x_{i+1})$$

$$\leq \prod_{i=n}^{n+m-1} \frac{\xi(x_{i})}{\xi(x_{i+1})}$$

$$= \frac{\xi(x_{n})}{\xi(x_{n+m})}.$$
 (2.3)

This implies that $\{x_n\}$ is a Cauchy sequence in *X*, since $\zeta(x_n) \rightarrow^m r$. By completeness of *X*, we have $x^* \in X$ such that $x_n \rightarrow^m x^*$. As *T* is *G*-continuous we have $Tx_n \rightarrow^m Tx^*$, that is, $x_{n+1} \rightarrow^m Tx^*$.

Sept-Oct.

Tx^{*}. Since the multiplicative limit point is unique. Thus, $x^* = Tx^*$. \Box

Example 2.2. Let X = R be endowed with the multiplicative metric $m(x, y) = e^{|x-y|}$. The graph G = (V, E) on X is defined as V = X and $E = \{(x, y): x, y \ge 0\} \cup \{(x, x): x \in X\}$. Define the mapping $T: X \to X$ by

$$Tx = \begin{cases} x^2 + 1 & \text{if } x < 0\\ x & \text{if } 0 \le x < 1\\ \sqrt{x} & \text{if } x > 1. \end{cases}$$

Define $\xi: X \to [1, \infty)$ by $\xi(t) = e^{2|t|}$ for each *t*. To see that, (2.1) holds, it is sufficient to consider the following cases:

(i) If
$$x \in [0,1)$$
, then for each $(x,Tx) \in X$, we have

$$m(x,Tx) = e^{|x-x|} = \frac{e^{2|x|}}{e^{2|x|}} = \frac{\xi(x)}{\xi(Tx)}.$$

(ii) If
$$x \ge 1$$
, then for each $(x, Tx) \in X$, we have

$$m(x, Tx) = e^{|x - \sqrt{x}|} < \frac{e^{2|x|}}{e^{2|\sqrt{x}|}} = \frac{\xi(x)}{\xi(Tx)}.$$

Thus, (2.1) holds. For $x_0 = 4$, we have $(x_0, Tx_0) \in E$. Moreover, *T* is *G*-continuous. Therefore, all conditions of Theorem 2.1 hold. Thus, *T* has fixed point.

In following theorem, we denote by CL(X) the space of all multiplicative closed subsets of X. A mapping $T: X \to CL(X)$ is said to be an edge preserving if for each $u \in Tx$ and $v \in Ty$ we have $(u, v) \in E$, whenever $(x, y) \in E$.

Theorem 2.3. Let (X, m) be a complete multiplicative metric space endowed with the graph *G*.

Let $T: X \to CL(X)$ be an edge preserving mapping such that for each $x \in X$ and $y \in Tx$ with $(x, y) \in E$, there exists $z \in Ty$ satisfying

$$m(y,z) \le \frac{\xi(x)}{\xi(y)} \tag{2.4}$$

where $\xi : X \to [1,\infty)$ be any function. Further, assume that the following conditions hold:

(i) there exist $x_0 \in X$ and $x_1 \in Tx_0$ such that $(x_0, x_1) \in E$;

(ii) the mapping $g(x) = \inf\{m(x, a): a \in Tx\}$ is Glower semi continuous, that is, for each sequence $\{x_n\}$ in X such that $x_n \to^m x$ and $(x_n, x_{n+1}) \in E$ for each $n \in N$, we have $g(x) \leq \liminf_{n \to \infty} g(x_n)$.

Then T has a fixed point.

Proof. By hypothesis (i), we have $x_0 \in X$ and $x_1 \in Tx_0$ such that $(x_0, x_1) \in E$. From (2.4), we have $x_2 \in Tx_1$ such that

$$m(x_1, x_2) \le \frac{\xi(x_0)}{\xi(x_1)}$$

As *T* is edge preserving mapping, then $(x_1, x_2) \in E$. Again from (2.4), we have $x_3 \in Tx_2$ such that

$$m(x_2, x_3) \le \frac{\xi(x_1)}{\xi(x_2)}$$

Continuing in the same way we get a sequence $\{x_n\}$ in X such that $x_{n+1} \in Tx_n$, $(x_n, x_{n+1}) \in E$ and

$$m(x_{n+1}, x_{n+2}) \le \frac{\xi(x_n)}{\xi(x_{n+1})}$$

for each $n \in \mathbb{N}$. (2.5) This implies that sequence $\{\xi(x_n)\}$ is a nonincreasing sequence, which is also bounded below by one, there exists $r \ge 1$ such that $\xi(x_n) \to^m r$. Now consider $m, n \in \mathbb{N}$, by using the

multiplicative triangular inequality, we have

$$m(x_n, x_{m+n}) \leq \prod_{i=n}^{n+m-1} m(x_i, x_{i+1})$$

$$\leq \prod_{i=n}^{n+m-1} \frac{\xi(x_{i-1})}{\xi(x_i)}$$

$$= \frac{\xi(x_{n-1})}{\xi(x_n)}.$$
(2.6)

This implies that $\{x_n\}$ is a Cauchy sequence in *X*, since $\xi(x_n) \to^m r$. By completeness of *X*, we have $x^* \in X$ such that $x_n \to^m x^*$. Now, we have $\lim_{n\to\infty} m(x_n, x_{n+1}) = 1$. Thus by hypothesis (ii), we get $g(x^*) = \inf\{m(x^*, a): a \in Tx^*\} = 1$. Thus, $x^* \in Tx^*$. \Box

Corollary 2.4. Let (X, m) be a complete multiplicative metric space endowed with the graph *G*. Let $T: X \to X$ be an edge preserving mapping such that for each $(x, Tx) \in E$, we have

$$m(Tx, T^2x) \le \frac{\xi(x)}{\xi(Tx)}$$

where $\xi: X \to [1,\infty)$ be any function. Further, assume that the following conditions hold:

(i) there exists $x_0 \in X$ such that $(x_0, Tx_0) \in E$;

(ii) *T* is *G*-continuous with respect to *m*, that is, $Tx_n \rightarrow^m Tx$ whenever, $x_n \rightarrow^m x$ and $(x_n, x_{n+1}) \in E$ for each $n \in N$. Then *T* has a fixed point.

3 Consequence

In above theorems, if we assume that the graph G = (V, E) is defined as V = X and E =

 $\{(x, y) : x \leq y\}$, then we get the following results:

Theorem 3.1. Let (X, m, \preceq) be a complete ordered multiplicative metric space. Let $T: X \to X$ be an ordered preserving mapping such that for each $x \preceq Tx$, we have

$$m(x, Tx) \le \frac{\xi(x)}{\xi(Tx)}$$

where $\xi : X \to [1,\infty)$ be any function. Further, assume that the following conditions hold:

(i) there exists $x_0 \in X$ such that $x_0 \preceq T x_0$;

(ii) T is ordered continuous with respect to m, that is, $Tx_n \rightarrow^m Tx$ whenever, $x_n \rightarrow^m x$ and

$$x_n \preceq x_{n+1}$$
 for each $n \in N$.

Then T has a fixed point.

Theorem 3.2. Let (X, m, \preceq) be a complete ordered

multiplicative metric space. Let $T: X \to CL(X)$ be an ordered preserving mapping such that for each $x \in X$ and $y \in Tx$ with $x \preceq y$, there exists $z \in Ty$ satisfying

$$m(y,z) \le \frac{\xi(x)}{\xi(y)}$$

where $\xi : X \to [1,\infty)$ be any function. Further, assume that the following conditions hold:

(i) there exist $x_0 \in X$ and $x_1 \in Tx_0$ such that $x_0 \preceq x_1$;

Sept-Oct.

(ii) the mapping $g(x) = \inf\{m(x, a): a \in Tx\}$ is ordered-lower semi continuous function, that is, for each sequence $\{x_n\}$ in X such that $x_n \to^m x$ and $x_n \preceq x_{n+1}$ for each $n \in N$, we have $g(x) \leq \liminf_{n \to \infty} g(x_n)$. Then T has a fixed point.

REFERENCES

- J. Caristi, Fixed point theorems for mapping satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (1976) 241-251.
- [2] W. A. Kirk, Caristi s fixed point theorem and metric convexity, Collo., Mathe., 36(1) (1976) 81 86
- [3] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 4 (2008) 1359-1373.
- [4] J. Tiammee, S. Suantai Coincidence point theorems for graph-preserving multi-valued mappings, Fixed Point Theory Appl.,2014, 2014:70 doi:10.1186/1687-1812-2014-70.
- [5] M. Samreen, T. Kamran, Fixed point theorems for integral *G*-contractions, Fixed Point Theory Appl., 2013 2013:149 doi:10.1186/1687-1812-2013-149.
- [6] T. Kamran, M. Samreen, N. Shahzad, Probabilistic Gcontractions, Fixed Point Theory Appl., 2013 2013:223 doi:10.1186/1687-1812-2013-223.
- [7] M. Samreen, T. Kamran, N. Shahzad, Some Fixed Point Theorems in *b*-Metric Space Endowed with Graph, Abstr. Appl. Anal., 2013, Article ID 967132, doi:10.1155/2013/967132.
- [8] F. Bojor, Fixed point of φ-contraction in metric spaces endowed with a graph, Anna. Uni. Crai. Math. Comp. Sci. Ser., 37 4 (2010) 85-92.

- [9] F. Bojor, Fixed point theorems for Reich type contractions on metric spaces with a graph, Nonlinear Anal., 75 (2012) 3895-3901.
- [10] A. Nicolae, D. O' Regan, A. Petrusel, Fixed point theorems for single-valued and multivalued generalized contractions in metric spaces endowed with a graph, Georgian Math. J., 18 (2011) 307-327.
- [11] S. M. A. Aleomraninejad, S. Rezapour, N. Shahzad, Some fixed point results on a metric space with a graph, Topology Appl., 159 (2012) 659-663.
- [12] J. H. Asl, B. Mohammadi, S. Rezapour, S. M. Vaezpour, Some Fixed point results for generalized quasi-contractive multifunctions on graphs, Filomat 27 2 (2013) 313-317.
- [13] F. Bojor, Fixed points of Kannan mappings in metric spaces endowed with a graph, An. St. Univ. Ovid. Consta., 20 1 (2012) 31-40.
- [14] M. Grossman, R. Katz, Non-Newtonian Calculus, Lee Press, Pigeon Cove, MA, 1972.
- [15] A. E. Bashirov, E. M. Kurpinar, A. Ozyapici , Multiplicative calculus and its applications, J. Math. Anal. Appl. 337(2008) 36-48.
- [16] M. Ozavsar, A. C. Cevikel, Fixed point of multiplicative contraction mappings on multiplicative metric space. arXiv:1205.5131v1 [matn.GN] (2012).