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1. INTRODUCTION 
The algebraic structure of semirings were first introduced by 

H. S. Vandiver [1]. Since then the concept of semiring have 

been deeply studied by the mathematician and proved very 

helpful in information sciences. Hemirings are the semirings 

with commutative addition and zero element. Semirings and 

hemirings are used to study graph theory, optimization theory, 

formal languages and automata theory [2, 3, 4]. Ideals in 

semiring play a vital role and are very useful for different 

purposes. J. Ahsan [5] introduced and characterized weakly 

regular semirings by the properties of their ideals. The concept 

of ternary rings was first introduced by D.H. Lehmer [6]. In his 

paper he also discussed certain algebraic structures called 

triplexes. Duta and Kar [7] generalized ternary rings and 

introduced the concept of ternary semirings. Bhambri et. al [8] 

introduced the concept of weakly regular ternary semirings. 

To deal with the uncertainties L. A. Zadeh [9] introduced the 

concept of fuzzy sets. Further he generalized this concept in 

[10] and introduced the concept of interval valued fuzzy sets. 

Shabir et. al [11] used the concept of interval valued fuzzy sets 

and characterized regular and weakly regular semirings by 

using their interval valued fuzzy ideals. 

Soft sets was first introduced by Molodtsov [12] aiming to deal 

with uncertainty or ambiguities using mathematical models. 

Soft sets got the importance as it was found that some 

problems that could not handled by existing tools like fuzzy 

sets and its generalizations can be handled by using soft sets. 

Maji [13] defined some new operations of soft sets and used it 

for decision making problems [14]. M. I. Ali et. al started 

working on soft sets and defined some new operations on soft 

sets [15]. Since then soft sets have been extensively used in 

many branches of Mathematics and information sciences. 

Feng Feng and Y. B. Jun [16] defined soft semirings and soft 

ideals in soft semirings. The study of soft groups by Aktas and 

Cagman [17], opened the doors of progress to use soft  

sets in algebric structure. This progress lead the researchers to 

the detailed study of soft rings [18], soft semigroup [19] and 

soft BCK/BCI algebra [20]. Song et. al [21] introduced the 

concept of soft intersectional ideals in semigroups. T. 

Mahmood and U. Tariq [22] carried out this concept and 

applied it on semirings. In this paper we introduce the notions 

of soft intersectional ternary subsemirings and soft 

intersectional ideals in ternary semirings. We also discuss 

some basic results associated with these notions. In the last 

part of the paper we characterize regular and weakly regular 

ternary semirings by their soft intersectional ideals. 

 

2. Preliminaries 

A set S  with a binary operation addition ""  and a 

ternary multiplication "" , denoted by juxtaposition, is said to 

be a ternary semiring S  if it satisfies the following 

conditions: 

 )()())(( noplmpmnoloplmni    

 mnoonomlii  ln))((   

 olmoonmliii ln)()(    

 ,)()( lmolmnonlmiv   for all .,,,, Sponml    

2.1 Remark 

From now to onward, if otherwise stated, S will always denote 

a ternary semiring. Further for undefined terms and notions for 

S see [6]. 

If U is initial universe, E is a set of parameters and A, B, C,… 

are subsets of E. Then we have: 

2.2 Definition [12] 

A soft set (     over   means that   is a mapping     
    . Then we will write here         instead of writing 

"      is soft set over ,"U  if otherwise stated. 

2.3 Definition [21] 

Let         and       . Then the set AwiA {);(  :

)(1 w   is called   inclusive set of ).,( A   

3. Main Results 

Here we take    , if otherwise stated. 

3.1 Definition 

For          and         , the sum             is 

defned by 

.  ,)}()({))(( 2121 Sumlu
mlu




   

3.2 Definition 

For         ,          and         , the product 

             is defined by 

3.3 Definition 

         is called ternary soft intersectional subsemiring of   

if   l , m , Sr , 

 )(i  l( )()() mlm   , 

 )(ii  )()()()( rmllmr   .  

It will be denoted by      
 . 

3.4 Definition 

         is called ternary soft intersectional left (right, 

lateral) ideal of   if   l , m ,   , 

 )(i  )()()( mlml   , 

 )(ii  )()( rlmr    
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 )()( ,)()( mlmrllmr   . It will be denoted by 

      

 
(      

        

  .  

         is called ternary soft intersectional ideal, if it is soft 

intersectional left, right and lateral ideal of   at the same time. 

It will be denoted by      
 

. 

3.5 Lemma 

         is      
 . of   if and only if       and     . 

 Proof.  Let us assume       is a      
  of  . Then,   

    

 )]()([))(( mlu
mlu

 


   

 )]([ ml
mlu




   

 )]([ u
mlu




   

 )(u . 

Thus,      . 

Now, ))(()(3 uu     

 )]}()()([{

1

iiii

rmlu

rml

iii

n

i

 








   

 )}({

1

iiii

rmlu

rml

iii

n

i









  

 )}({ 1

1

iii

n
i

rmlu

rml

iii

n

i





 




   

 )}({

1

u

iii

n

i
rmlu









  

 )(u . 

Thus,     .  

Conversely, let us assume       and     . Then, 

           , 

 ))(()( vuvu     

 )]()([ ml
mlvu

 


   

 )()( vu   . 

And 

 ))(()()( 3 uvwuvwuvw     

 )]}()()([{

1

iiii

rmluvw

rml

iii

n

i

 








   

 )]()()([ wvu     

Thus, )()()( vuvu    and 

)()()()( wvuuvw   ,            . 

Hence,       is      
  of  . 

3.6 Lemma 

         is       

 
(      

        

   of   if and only if     

  and  SS  (  SS ,  SS  ). 

 Proof.  Let us assume       be a       

  of  . Then,      

 )]()([))(( mlu
mlu

 


   

 )]([ ml
mlu




   

 )(u
mlu




   

 )(u . 

Thus,   . 

Now,  )]()()([

))((

1

iiSiSi

rmlu

SS

rml

u

iii

n

i














   

  )]({

1

ii

rmlu

rUU

iii

n

i










   

  )(

1

ii

rmlu

r

iii

n

i









  

 )}({

1

iiii

rmlu

rml

iii

n

i









  

 )]([ 1

1

iii

n
i

rmlu

rml

iii

n

i





 




   

 )(

1

u

iii

n

i
rmlu









  

 )(u . 

Thus,  SS . 

Conversely, let us assume    and . SS  

Then, for all           

 ))(()( vuvu     

 )]()([ ml
mlvu

 


   

 )()( ml   . 

And,  

))(()( uvwuvw SS     

  )]()()([

1

iiSiSi

rmluvw

rml

iii

n

i

 








   

 )]()()([ wvu SS     

 )]([ wUU    

 )(w . 

Thus, )()()( vuvu    and )()( wuvw   , 

          . Hence,         be a       

  of  . 

3.7 Theorem 

      . Then   is      of   if and only if    is 

.  

,
)}()(

)({

))((

32

1

321

1

Su

rm

l

u

ii

i
i

rmlu iii

n

i





















 





 

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  of  . 

 Proof. Suppose that,   is a      of   and             

Case     For         , we have,    ,       . Then 

 )()()( vuUUUvu WWW    and 

 
)()()(

)(

wvu

UUUUuvw

WWW

W








. 

Case      For at least one, say    , we have 

)(vW . Then 

  )()( uvu WW    

 )()( vu WW   , 

 and )()()( wuuvw WWW     

 )()()( wvu WWW   . 

By combining the both cases, we have 

 )()()( vuvu WWW    and 

)()()()( wvuuvw WWWW   . 

Hence,    is ternary      
  of S . 

Conversely, assume that    is a      
  of   and        

 . Then 

 )()()( vuvu WWW     

 UUU  , 

 and )()()()( wvuuvw WWWW     

 UUUU  . 

Thus,    ,      ,            

This shows that,   is a      of  . 

3.8 Theorem 

Let    . Then   is    
 (   

    
) of   if and only if the 

characteristic function    is       

 
(      

        

   of  . 

 Proof. Suppose that,   is a    
 of   and       S. 

Case     For        , we have,    ,      . Then 

 )()()( wuUUUwu WWW    and 

 )()( wUuvw WW   . 

Case      For at least one, say    , we have, 

)(wW . Then 

  )()( uwu WW    

 )()( wu WW   , 

 and  )()()( vuuvw WWW    

 )()()( wvu WWW   . 

By combining the both cases, we have 

 )()()( wuwu WWW    and 

)()( wuvw WW   . 

Hence,    is       

  of  . 

Conversely, assume that    is a       

  of   and        

 . Then 

 )()()( wuvu WWW     

 UUU  , 

 and )()()()( wvuuvw WWWW     

 )(wUU W   

 )(wW . 

Thus,    ,      ,             
This shows that,   is a    

 of  . 

3.9 Theorem 

If ),,( 1 US , ),,( 2 US  be two       

           

   , 

      

    of  , then their sum ),,( 21 US   is also a 

      

         

 ,       

  of  . 

 Proof. To show that ),,( 21 US   is a       

  of  , we 

will have to prove that 

 ))(())(())(( 212121 vuvu    and 

))(())(( 2121 wuvw   , 

             
Then,  

)]}()([{

)]}()([{

))(())((

21
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2121

ml

ml

vu

mlv

mlu























   

 )]()()()([ 2121
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mlml
mlvmlu




   

 )]()([ 21

 ,

mmll
mlvmlu




   

 )]()([ 21 yx
yxvu

 


   

 ))(( 21 vu   . 

And, )]()([))(( 2121 mlw
mlw

 


   

 )]()([ 21 uvmuvl
vuw

 


   

 )]()([ 21 yx
yxuvw

 


   

 ))(( 21 uvw  . 

Hence           is a       

  of  . 

3.10 Theorem 

If ),,( 1 US , ),,( 2 US  and ),,( 3 US  be three 

      

           

   ,       

    of  , then 321(  , S , )U  is 

also a       

         

 ,       

  of  . 

 Proof. Let       . Then 

  )]()()([
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321
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1
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u
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
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







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3.11 Theorem 
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Since, S  is  vN-r , so, for Sw  there exist Sl  such 

that wlww  . 

Now )()()())(( 321321 wwww     
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This implies that 

)2(321321     

From )1(  and )2(   

.321321    

 )()( iiii   Let E  be a    
, F  be a    

 and G  be a 

   
 of S . Then the characteristic functions E  , F   and 

G   are 
t

iRsi- , 
t

iEsi-  and 
t

iLsi-  of S , respectively, and 

by hypothesis 
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 GFEGFEEFG     

 GFEEFG    

Thus, GFEEFG    

Therefore, S  is  rvN - . 

3.12 Theorem 

For S  with 1 , the following are equivalent 

 )(i  S  is  
rwR -

. 

 )(ii  All  
iR 's of S  are idempotent. 

 )(iii  GFEEFG  , for any E , F  and G  as 

   
    

 and    
 of S , respectively. 

 )(iv  All 
t

iRsi-  's of S  are fully idempotent. 

 )(v  321321   , for any 1 , 2  and 3  

as 
t

iRsi- , 
t

iEsi-  and 
t

iLsi-  of S , respectively. 

If S  is commutative then )()( vi   are equivalent to 

 )(vi  S  is  vN-r . 
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Since, S  is  
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Thus, 
3  . 

Hence,   is fully idempotent. 
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. Then Sw  can be written as 
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   321321   . 

   321321   . 

 )()( iiiv   Let E , F  and G  are  
iR ,  

iE  and  

iL  of S , respectively. Then the characteristic functions E 

, F   and G   are 
t

iRsi- , 
t

iEsi-  and 
t

iLsi-  of S , 

respectively, and by hypothesis 

 GFEGFEEFG     

 GFEEFG     

 GFEEFG  . 

 )()()( iiiiii   and )()( vii   are straightforward.  
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