A BRIEF INTRODUCTION TO TOPOLOGICAL HYPERGROUP

Rabah Kellil*, Ferdaous Kellil**

*University of Majmaah, Faculty of Science Al Zulfi. Samnan Quarter, Al Zulfi, KSA Email: kellilrabah@yahoo.fr **University of Qassim, Faculty of Science Buraidha. Buraidha, KSA Email: kellilferdaous@yahoo.fr

ABSTRACT: This paper deals with a hypergroup and a topology. As we cannot endow the power set with a topology derived from the topology of a hypergroup H, we define the notion of upper and lower semicontinuous mapping and then define a topological hypergroup as a hypergroup induced with a topology such that the hyperoperation must be compatible with the algebraic structure. We also study the quotient of a hypergroup by an equivalence relation and show that this quotient becomes a semigroup.

Keywords: Hypergroupoid, hypergroups, topology, quotient of hypergroupoid, fundamental open set, saturated open set, semicontinuity

2010 MSC: code 20N20, 68Q70, 51M05

1. PRELIMINARIES

First of all, we shall recall some basic definitions of hypergroup theory. Let H be a

Nonempty set and denote by *c* the set of all nonempty subsets of H.

Definition 1 A hyperoperation on H is a mapping; \circ : $H \times$ $H \rightarrow \mathcal{P}^*(H)$

A nonempty set *H* endowed with a hyperoperation \circ is said to be a hypergroupoid.

The image of the pair $(a, b) \in H \times H$ is usually denoted by $a \circ b$ and called the hyperproduct of a and b.

If A and B are nonempty subsets of H, then we define

 $A \circ B = \bigcup_{a \in A, b \setminus in B} a \circ b$

and call it the hyperproduct of A and B.

Also, for any, $a, b \in H$ we define

 $a/_{h} = \{x \in H / a \in x \circ b\}.$

Definition 2.

1. The hypergroupoid (H, \circ) is called a

semihypergroup if the hyperoperation • is associative. 2. If (H, \circ) satisfies the reproducibility law $a \circ H =$

 $H \circ a = H$; $\forall a \in H$; then we say that it is a quasihypergroup. 3. A hypergroup is a hypergroupoid which is both a

semihypergroup and a quasihypergroup.

4. A hypergroup *H* is said to have a unity or to be unitary if there exists a unique element $1 \in H$ such that $1 \circ a = a \circ 1 = \{a\}; \forall a \in H.$

Definition 3 A subset K of hypergroup (H, \circ) is a subhypergroup if and only if the following conditions are satisfied:

1. $a \circ b \subset K$, for all, $a; b \in K$.

2. $a \circ K = K \circ a = K$; for all $a \in K$.

Clearly, H is a subhypergroup of itself. Any other subhypergroup of H will be called a proper subhypergroup. 2 Main results

In the sequel \mathcal{T}_m denotes a topology on a set where any element x is contained in a least (for the inclusion) open set $\mathcal{O}(x)$ and called a fundamental open set.

Remark 1 The discrete topology on a set is a topology having the desired property. The open set O(x) is just the singleton $\{x\}$.

Proposition 4 If a set H is equipped with the topology T_m and \circ is a hyperoperation on H defined by $x \circ y = \mathcal{O}(x) \cup$ $\mathcal{O}(y)$; then the set (H, \circ) is a hypergroup.

The family $\{\mathcal{O}(x); x \mid \text{in } H\}$ is called in the sequel a fundamental family.

Proof. It is clear that $x \circ y \neq \emptyset$. Since the union is associative then \circ is so. Let $a \in H$ then for all $x \in H$; $x \in \mathcal{O}(a) \cup$ $\mathcal{O}(x) = a \circ x$ so

$$H \subset \bigcup_{u \in U} (a \circ x) = a \circ H \subset H$$

and then it will be easy to get $a \circ H = H = H \circ a$.

Lemma 5 If $x \in O$; where O is an open set of the topological space (H, T_m); then

 $\mathcal{O}(x) \subset \mathcal{O}$.

Proof. Since $x \in \mathcal{O}(x) \cap \mathcal{O}$ then $\mathcal{O}(x) \cap \mathcal{O} \neq \emptyset$. Suppose that $\mathcal{O}(x)$ is not included in \mathcal{O} ; then since $\mathcal{O}(x) \cap \mathcal{O} \subsetneq$ $\mathcal{O}(x) \cap \mathcal{O}$ and $\mathcal{O}(x) \cap \mathcal{O}$ is also a nonempty open set containing x; the open set $\mathcal{O}(x)$ is not the least open set containing x which is a contradiction.

As it has been done for topological groups; we wish to introduce a topology on hypergroup in such a way that the hyperoperation becomes continue. But we cannot define on the power set $\mathcal{P}^*(H)$ a topology in narrow relation with the topology of the hypergroup H. We introduce the semicontinuity and then give an adequate definition of topological hypergroup.

Definition 6 Let (H, T_1) , (K, T_2) be two topological spaces and ϕ : $H \rightarrow \mathcal{P}(K)$ be a mapping.

1. ϕ is said to be upper semicontinuous if for all $\mathcal{O} \in \mathcal{T}_2$

the set $\mathcal{O}^* = \{ x \in H : \phi(x) \subset \mathcal{O} \}$ is open in*H*.

2. ϕ is said to be lower semicontinuous if for all $\mathcal{O} \in \mathcal{T}_2$

the set $\mathcal{O}_* = \{ x \in H : \phi(x) \cap \mathcal{O} \neq \emptyset \}$ is open in *H*.

3. ϕ is said to be semicontinuous if it is upper

semicontinuous and lower semicontinuous.

We can then adapt the above definition to a topological hypergroups.

Definition 7 Let (H, \circ) be a hypergroupoid and (H, T) be a topological space, the cartesian product $H \times H$ will be *equipped with the product topology. The hyperoperation* • *is* called:

1. upper semcontinuous, if for every $\mathcal{O} \in \mathcal{T}$, the set $\mathcal{O}^* = \{ (x, y) \in H \times H : x \circ y \subset \mathcal{O} \}$ is open in $H \times H$.

2. lower semicontinuous, if for every $\mathcal{O} \in \mathcal{T}$, the set $\mathcal{O}_* = \{ (x, y) \in H \times H :$

 $x \circ y \cap \mathcal{O} \neq \emptyset$ is open in $H \times H$.

3. Similarly, the hyperoperation \circ is semicontinuous if it is upper and lower semicontinuous.

4. The hyperoperation \circ is sp-continuous if and only if for any $\mathcal{O} \in \mathcal{T}$ and any pair $(x, y) \in H \times H$ such that $x \circ y = \mathcal{O}$ there exist $U, V \in \mathcal{T}, x \in U, y \in V$ such that $u \circ v = \mathcal{O}$ for any $u \in U$ and $v \in V$.

Proposition 8 The hyperoperation of any hypergroup Hendowed with the topology T_m is upper semicontinuous. More exactly for any open set O; we have $O^* = O \times O$.

Proof. Let \mathcal{O} be an open set of H. If $(x, y) \in \mathcal{O}^*$ then $\mathcal{O}(x) \cap \mathcal{O}(y) \subset \mathcal{O}$. Since $x \in \mathcal{O}(x) \subset \mathcal{O}$ and $y \in \mathcal{O}(y) \subset \mathcal{O}$ we get $(x, y) \in \mathcal{O} \times \mathcal{O}$.

Conversely; let $(x, y) \in \mathcal{O} \times \mathcal{O}$. By lemma 5; both the open sets $\mathcal{O}(x)$ and $\mathcal{O}(y)$ are included in \mathcal{O} so is their union and finally $(x, y) \in \mathcal{O}^*$.

Proposition 9 The hyperoperation of any topological

hypergroup (H, T_m) is lower semicontinuous if

 $\mathcal{O}(x) \cap \mathcal{O} \neq \emptyset \Longrightarrow \mathcal{O}(a) \cap \mathcal{O} \neq \emptyset; \ \forall a \in \mathcal{O}(x).$

Proof. Let \mathcal{O} be an open set of H. Since $\mathcal{O}(x)$ is a neighborhood of x for any $x \in H$. To prove that \mathcal{O}_* is open; we will prove that for any $(x, y) \in \mathcal{O}_*$ there exists a neighborhood W of (x, y) such that $(x, y) \in W \subset \mathcal{O}_*$.

Let $(x, y) \in O_*$ and set $W = O(x) \times O(y)$. This set is evidently an open set of $H \times H$ and then a neighborhood of (x, y).

The condition $(\mathcal{O}(x) \cup \mathcal{O}(y)) \cap \mathcal{O} \neq \emptyset$ implies that $\mathcal{O}(x) \cap \mathcal{O} \neq \emptyset$ or $\mathcal{O}(y) \cap \mathcal{O} \neq \emptyset$ For $(a,b) \in \mathcal{O}(x) \times \mathcal{O}(y)$ and from our condition we can deduce that $\mathcal{O}(a) \cap \mathcal{O} \neq \emptyset$ or $\mathcal{O}(b) \cap \mathcal{O} \neq \emptyset$ and so $(\mathcal{O}(a) \cup \mathcal{O}(b)) \neq \emptyset$ and $(a,b) \in \mathcal{O}_*$ Finally $(x, y) \in \mathcal{O}(x) \times \mathcal{O}(y) \subset \mathcal{O}_*$ and \mathcal{O}_* is an open set.

Definition 10 A topological hypergroup (H, \circ) is a hypergroup endowed with a topology T such that the

hyperoperation is semicontinue.

Proposition 11 If (H, \circ) is a hypergroup and the topology T_m on H is such

 $\mathcal{O}(x) \cap \mathcal{O} \neq \emptyset \Longrightarrow \mathcal{O}(a) \cap \mathcal{O} \neq \emptyset; \ \forall a \in \mathcal{O}(x)$

for a fundamental saturated family $\{ \mathcal{O}(x); x \in H \}$; then *H* is a topological hypergroup.

Remark 2 It is trivial that the hyperoperation • as defined above is commutative.

Example 12 The discrete topology on (H, \circ) ; $x \circ y = \{x, y\}$ has the required properties H and then H is a topological hypergroup.

Proposition 13 Let \mathcal{T}_m be a topology on a set H as in proposition 4. If $\forall z \in \mathcal{O}(x) \cap \mathcal{O}(y)$ the open set

 $\mathcal{O}(z) \subset \mathcal{O}(x) \cap \mathcal{O}(y)$; then the family { $\mathcal{O}(x) / x \in H$ } is a base of \mathcal{T}_m .

Proof. The proof is trivial.

Proposition 14 Any open set K of a hypergroup H endowed with the topology T_m is a subhypergroup of H. *Proof.*

1. If $x \in K$ then $x \in \mathcal{O}(x) \cap K$ which is an open set. Consequently $\mathcal{O}(x) \subset K$ and then $a \circ b \subset K$, for all $a, b \in K$.

2. By the definition of our topology, any $x \in K$ is such $x \in \mathcal{O}(x)$ and so $\forall a \in K$; $x \in \mathcal{O}(a) \cup \mathcal{O}(x)$ and then we get $K \subset K \circ a \subset K \Longrightarrow K = K \circ a$. The other equality can be obtained by a similar manner.

Clearly, H is a subhypergroup of itself. Any other subhypergroup of H will be called a proper subhypergroup. **Definition 15** Let O(a) as defined in proposition 4. We say

that $\mathcal{O}(\mathbf{a})$ is saturated if :

 $\forall x \in \mathcal{O}(a) \text{ we have } \mathcal{O}(x) = \mathcal{O}(a).$

Proposition 16 Let (H, \mathcal{T}_m) as in proposition 4; if the

elements of the family $\mathcal{F}_{\mathcal{T}_m} = \{ \mathcal{O}(x) / x \in H \}$ are

saturated; then the family form a partition of H.

Proof. It is clear that the family is a cover of *H*. Suppose that $\mathcal{O}(a) \cap \mathcal{O}(x) \neq \emptyset$; so for $b \in \mathcal{O}(a) \cap \mathcal{O}(x)$

we have $\mathcal{O}(b) = \mathcal{O}(x)$ and $\mathcal{O}(b) \cap \mathcal{O}(a)$ so $\mathcal{O}(a) = \mathcal{O}(x)$.

Proposition 17 Let (H, \mathcal{T}_m) as above. The relation \mathcal{R}_m

defined on H by :

 $x \mathcal{R}_m y \Leftrightarrow \mathcal{O}(y) = \mathcal{O}(x);$

is an equivalence relation.

If in addition the open sets O(x) are saturated; then the class of any element x is defined as:

 $\overline{x} = \mathcal{O}(x).$

Proof. The proof is trivial.

Proposition 18 If the union of two fundamental open sets is a fundamental open set); the quotient set $(H / \mathcal{R}_m, \circ)$ where $\mathcal{O}(x) \circ \mathcal{O}(y) = \mathcal{O}(x) \cup \mathcal{O}(y)$ is a semigroup.

Proof. From the condition on the union of two fundamental open sets; the operation \circ on H / \mathcal{R}_m is a binary operation. In the other from the associativity of the union of sets we get the associativity of the binary operation \circ on H / \mathcal{R}_m .

Definition 19 Let (H, \circ) be a hypergroup an equivalence relation \mathcal{R} on H is said to be compatible with the hyperoperation \circ if :

 $a \mathcal{R} b \implies a \circ c \mathcal{\widetilde{R}} b \circ c \text{ and } c \circ a \mathcal{\widetilde{R}} c \circ b; \forall c \in H$

where for $A, B \subset H$; $A \widetilde{\mathcal{R}} B \Leftrightarrow \forall a \in A, \exists b \in B$ such that $a \mathcal{R} b$ and conversely.

Proposition 20 If \mathcal{R}_m is the equivalence relation on the hypergroup (H, \circ) endowed with the opology \mathcal{T}_m ; the relation $\tilde{\mathcal{R}}_m$ is an equivalence relation on the family $\mathcal{F} = \{ \mathcal{O}(x); x \in H \}.$

Proof. The proof is easy to establish.

Proposition 21 The relation \mathcal{R}_m defined in the hypergroup (H, \circ) endowed with the topology \mathcal{T}_m is compatible with \circ . *Proof.* Let $a \mathcal{R}_m b$ then $\mathcal{O}(a) = \mathcal{O}(b)$. For any $c \in H$; and since $\mathcal{O}(a) \cup \mathcal{O}(c) = \mathcal{O}(b) \cup \mathcal{O}(c)$; then $a \circ c = b \circ c$ and since $\tilde{\mathcal{R}}_m$ is reflexive; we have $a \circ c \tilde{\mathcal{R}}_m b \circ c$.

Proposition 22 Let $\{\mathcal{O}(x)\}$ be a fundamental family. For any open set \mathcal{O} and saturated open set $\mathcal{O}(x)$; either $\mathcal{O}(x) \cap \mathcal{O} = \emptyset$ or $\mathcal{O}(x) \subset \mathcal{O}$.

Proof. Suppose $\mathcal{O}(x) \cap \mathcal{O} \neq \emptyset$ then for any $a \in \mathcal{O}(x) \cap \mathcal{O}$ one has $\mathcal{O}(x) = \mathcal{O}(a)$ and $\mathcal{O}(a) \subset \mathcal{O}$ so $\mathcal{O}(x) \subset \mathcal{O}$.

Proposition 23 Let (H, T_m) be a topological hypergroup and \mathcal{R} be the equivalence relation defined as above. If the family $\{ \mathcal{O}(x) \}$ is saturated then H / \mathcal{R}_m is a hypergroup for the hyperoperation :

 $\mathcal{O}(x) \circ \mathcal{O}(y) = \mathcal{O}(x) \cup \mathcal{O}(y).$

Proof. The proof is trivial.

Definition 24 For $a \in H$ the mapping

 $f_a: \begin{array}{ccc} H \setminus \{a\} & \to & \mathcal{P}^*(H) \\ x & \mapsto & a \circ x \end{array}$

is said

- 1. semi-injective if : $a \circ x = a \circ y \Longrightarrow \mathcal{O}(x) = \mathcal{O}(y)$.
- 2. semi-surjective if : $\forall \phi \neq A \subset H$; $\exists x \in H$ such that

 $A \subset f_a(x) = a \circ x.$

Proposition 25 Let $\{O(x)\}$ be a fundamental and saturated family, the mapping

 $f_a: \begin{array}{ccc} H \setminus \{a\} & \to & \mathcal{P}^*(H) \\ x & \longmapsto & a \circ x \\ \text{is semi-injective.} \end{array}$

Proof. Suppose $\mathcal{O}(a) \cup \mathcal{O}(x) = \mathcal{O}(a) \cup \mathcal{O}(y)$ and $b \in \mathcal{O}(x)$

1. If $b \in \mathcal{O}(a)$ then $\mathcal{O}(a) = \mathcal{O}(x)$ and therefore $\mathcal{O}(x) = \mathcal{O}(x) \cup \mathcal{O}(y)$ which implies that $\mathcal{O}(y) \subset \mathcal{O}(x)$ and finally from the saturation since $y \in \mathcal{O}(y) \subset \mathcal{O}(x)$, we have $\mathcal{O}(y) = \mathcal{O}(x)$.

2. If $b \notin \mathcal{O}(a)$ but $b \in \mathcal{O}(a) \cup \mathcal{O}(x) = \mathcal{O}(a) \cup \mathcal{O}(y)$ then $b \in \mathcal{O}(y)$ and so $\mathcal{O}(x) \subset \mathcal{O}(y)$, which gives finally $\mathcal{O}(x) = \mathcal{O}(y)$.

Proposition 26 Let $\{O(x)\}$ be a fundamental family where the union of two fundamental open sets is a fundamental open set, the mapping

 $f_a: \begin{array}{ccc} H \setminus \{a\} & \to & \mathcal{P}^*(H) \\ x & \mapsto & a \circ x \\ \text{is then cominguing} \end{array}$

is then semi-surjective. Proof Let $A \in \mathcal{P}^*(H)$ then

Proof. Let $A \in \mathcal{P}^*(H)$ then $A \subset \bigcup_{x \in A} \mathcal{O}(x)$ but from our condition there exists $b \in H$ such that $\mathcal{O}(b) \subset \bigcup_{x \in A} \mathcal{O}(x)$ and $A \subset \bigcup_{x \in A} \mathcal{O}(x) = \mathcal{O}(b) \subset \mathcal{O}(a) \cup \mathcal{O}(b)$.

Comment 1. Next our goal is the study of the topology on the quotient semigroup H / \mathcal{R}_m induced by the topology of hypergroup H. We think that the binary operation \circ on H / \mathcal{R}_m presents some nice continuity properties.

ACKNOWLEDGMENTS: This project is funded by the Deanship of Scientific Research, Majmaah University, Saudia Arabia under grant N°

REFERENCES:

- [1]Al Ali, M.I.M., Hypergraphs, hypergroupoids and hypergroups, It.J.of Pur. and Appl. Math., N°8, (2000), 45-48.
- [2]Ameri, R., Topological (Transposition) Hypergroups., Italian J. of Pure and Appl. Math. N.13., (2003), 171-176.
- [3] Antampoufis, N., Contribution to the study of Hyperstructures with applications in Compulsory Education., Doctoral Thesis.(Gr), Alexandroupolis, Greece, (2008).
- [4] Ashrafi, A.R., Construction of some Join Spaces from Boolean Algebras., Iran. Int. J. sci.1, No. 2, (2000), 131-138,(only electronically).

[5] Ashrafi, A.R., About some Join spaces and hyperlattices., Italian J. of Pure and Appl. Math. N.10, (2001), 199-206.

- [6] Chvalina, J., Commutative hypergroups in the sense of Marty and ordered sets, Proc. Summer School on General Algebra and Ordered Sets (1994), Olomouc (Czech Republic), 19–30.SEVERAL ASPECTS ON THE HYPERGROUPS 109.
- [7] Corsini, P., Prolegomena of Hypergroups Theory, Aviani Editore, 1993.
- [8] Corsini, P., Hypergraphs and hypergroups, Algebra Universalis, 35(1996), 548–555.
- [9] Corsini, P., On the Hypergroups Associated with Binary Relations, Multi. Val. Logic, 5(2000), 407–419.
- [10] Corsini, P., Binary relations, interval structured and join spaces, J. Appl. Math. Comput., 10(2002), no. 1-2, 209–216.
- [11] Corsini, P., Leoreanu, V., Applications of Hyperstructure Theory, Kluwer Academic Publishers, Advances in Mathematics, 2003.
- [12] Corsini, P., Leoreanu, V., Hypergroups and binary relations, Algebra Universalis, 43(2000), 321–330.
- [13] Cristea, I., Stef?anescu, M., Binary relations and reduced hypergroups, Discrete Math., 308(2008), 3537-3544.
- [9] Cristea, I., Stef?anescu, M., Hypergroups and n-ary relations, submitted (2009).
- [14] Jantosciak, J., Reduced Hypergroups, Algebraic Hyperstructures and Applications
- (T. Vougiouklis, ed.), Proc. 4th Int. cong. Xanthi, Greece, 1990, World Scientific, Singapore,(1991), 119–122.
- [15] Marty, F.,Sur une g'en'eralization de la notion de group, Eight Congress Math. Scandenaves, Stockholm, (1934), 45–49.
- [16] Massouros, Ch.G., Tsitouras, Ch., Enumeration of hypercompositional structures defined by binary relations, submitted.
- [17] Nieminen, J., Join space graphs, J.Geom., 33(1988), 99– 103.
- [18] Novak, V., On representation of ternary structures, Math. Slovaca, 45(1995), no.5, 469–480.
- [19] Novak, V., Novotny, M., Pseudodimension of relational structures, Czech.Math.J., 49(1999), no.124, 547–560.
- [20] Novotny, M., Ternary structures and groupoids, Czech.Math.J., 41(1991), no.116, 90–98.
- [21] Rosenberg, I.G., Hypergroups and join spaces determined by relations, Ital. J. Pure Appl. Math., 4(1998), 93–101.