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ABSTRACT: This paper deals with the state feedback 
H  stabilization problem of discrete-time 2-D (two-dimensional) 

switched systems subject to actuator saturation. Firstly, a sufficient condition for asymptotical stability and 
H  disturbance 

attenuation performance of the system under consideration is developed by using the multiple Lyapunov functional method 
while the saturation behavior is described by the convex hull. Secondly, a state feedback controller is designed which 
guarantees that the resulting closed-loop system is asymptotically stable and possess a prescribed 

H  disturbance 
attenuation level  . Finally, an example is provided to show the validity and effectiveness of the proposed methodology. 
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1. INTRODUCTION 
During the past few decades’ 2-D (two-dimensional) 
systems have greatly attracted the attention of researchers 
due to their increasing application in many areas such as, 
digital signal processing (DSP), electrical transmission lines, 
digital image processing and process control [1-3]. Roesser 
model, FM-model (Fornasini-Marchesini model) and Attasi 
model are well known state space models for 2-D systems. 
The stability problem of 2-D discrete systems was 
investigated by the authors in (see [4-8] and references cited 
therein). 
On the other hand, a switched system is a hybrid system 
which consists of several subsystems and a switching rule 
that orchestrates the switching among them. Switched 
systems have applications in many areas like, automotive 
control, power electronics, switching power supplies and air 
traffic controls [9, 10]. Lyapunov stability theory is very 
effective tool for stability and stabilization of control 
systems [11-13]. The common Lyapunov functional method, 
the multiple Lyapunov functional method and the average 
dwell time approach are the three well known techniques 
for dealing with switched systems [14-16]. The switch 
phenomenon was also proposed to occur among 2-D 
discrete systems in [17], where the switching law was 
considered as Markovian jumping one. Researchers in [18] 
have solved stability and control problem of 2-D switched 
systems by the common Lyapunov functional method and 
the multiple Lyapunov functional method.   
Moreover, actuators are subject to saturation in practical 
control systems due to physical limitations and safety 
constraints. Actuator saturation may cause poor 
performance of the system or it can even lead to the system 
instability. Stability and control problem of 2-D discrete 
systems with actuator saturation was solved in [19-21].  
Furthermore, 

H  
control theory has been extensively used 

by researchers as system robustness analysis tool. Robust 

H
 filter design for 2-D discrete systems was presented in 

[22]. Robust 
2l
-gain control problem of 2-D nonlinear 

stochastic systems with time-varying delays and actuator 
saturation was solved in [23]. Researchers in [24] have 
presented solution to the problem of stability analysis of 
2-D discrete linear system described by the FM second 
model with actuator saturation. Recently the problem of 

H  
control for 2-D switched systems with time-varying 

delays and actuator saturation was studied in [25, 26]. Duan 
and Xiang in [27] have solved the stability and 

H
 

control of 2-D switched delay free systems.  

Motivated by the results presented in [27], authors in this 
paper aim to solve 

H  
stabilization problem for 2-D 

discrete switched delay free systems with actuator 
saturation, which to the best of our knowledge has not been 
fully investigated till date and deserves further attention.  
The main contributions of this paper can be summarized as: 
1) A new stability condition for 2-D discrete switched 
systems with actuator saturation has been presented along 
with 

H  performance. 2) A state feedback 
H  controller 

has also been presented, which guarantee that the resulting 
closed-loop system is asymptotically stable and has a 
prescribed 

H  
disturbance level  . All results are 

formulated in terms of linear matrix inequalities (LMIs) 
which are therefore easy to solve.  
The remainder of this paper is organized as follows. In 
Section 2, problem formulation and some necessary lemmas 
are given. In Section 3, main results are described. All these 
sufficient conditions are derived in terms of linear matrix 
inequalities (LMI). In section 4, an example is illustrated to 
show the effectiveness of derived results. In section 5 
concluding remarks are given. 

Nomenclature 
TM    Transpose of M .  

.    Euclidean norm.  
I    The identity matrix. 
Z


   Set of all nonnegative integers.  
, ,k m nR R R      The real numbers, real k  vectors, real 

 m n  matrices.   

 sat 
  

Saturation function. 
sup(.)

 
  Supremum function. 

 diag a
i  

Diagonal matrix with the diagonal elements ai
, 

1, 2, ...,i n .  
1

X


   Inverse of X .  
{ }co

  
The convex hull 

 ( )   Term in matrix that is induced by symmetry.  

The 
2l -norm of any 2-D signal  ,w i j  is given by: 

   , , .
2

0 0

Tw w i j w i j

i j

 
   
   

 

where  ,w i j  belongs to      ,0,,02l , if 
2

w . 

2. PROBLEM FORMULATION AND PRELIMINARIES 
Consider the following discrete 2-D switched system in 
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Roesser model with actuator saturation: 

 
 

 
 

 
 

 , , , ( , ).
, , ,

x i j A x i j B w i j E sat u i j
i j i j i j  


    

             , , , ( , )
, , ,

z i j C x i j D w i j F sat u i j
i j i j i j  

   , 

, 0,1,2i j     (1) 

With, 

   

 

1,
,

, 1

hx i j
x i j

vx i j

 
 
 
  






,  
 

 

,
,

,

hx i j
x i j

vx i j

 
 
 
  

 , 

 

 

 

 

 

, ,
11 12

, , ,
21 22

i j i j
A A

A
i j i j i j

A A

 

  

 
 
 
 
  

 , 
 

 

 

,
1

, ,
2

i j
B

B
i j i j

B



 

 
 
 
 
  

 , 

 

 

 

,
1

, ,
2

i j
E

E
i j i j

E



 

 
 
 
 
  

 , 
   , ,

( , ) 1 2
i j i j

C C Ci j
 


 
 
 

 , 

 

 

 

,
1

.
, ,

2

i j
F

F
i j i j

F



 

 
 
 
 
  

  

Where   1,
nhx i j R  and   2,

nvx i j R  are the 
horizontal state and the vertical state respectively,  ,x i j  
is the whole state in nR  with 

21 nnn  ,  , qw i j R
is the disturbance input which belongs to      ,0,,02l , 

( , ) mu i j R  is the controlled input, ( , ) pz i j R  is the 
controlled output and  

   , :  1,2,...,i j Z Z N N      is the switching 
signal. N  is the number of subsystems.  ,i j k  ,
k N , denotes that the k -th subsystem is activated. kA , 

kB , kC , kD , kE  and kF are real matrices with 
appropriate dimensions. i and j  are integers in Z . The 
boundary condition is satisfied if 

2
)0(X

 
with 

(0)X
 

defined as follows: 

             0 0,0 , 0,1 , 0,2 , , 0,0 , 1,0 , 2,0 , .
Th h h v v vX x x x x x x 

  
      

(2) 

The saturation function   : m msat R R   is defined as: 
       , , , .1 2

T
sat u sat u sat u sat um

 
 


    

 (3) 

With input defined as: , , , .1 2
T mu u u u Rm

 
 

   For 
1,2,...,p m , a standard saturation function can be described 

as:      min 1,sat u sign u up p p . 

By implementing the closed loop state feedback control law: 
     , ,

,
u i j K x i j

i j
  with: 

 
   , ,

[ ]
1 2,

i j i j
K K K

a i j
 

 , where
 , 1

1

m ni j
K R
 

 ,

 , 2
2

m ni j
K R
 

 are the controller gain matrices to be 

designed. The corresponding closed-loop system is: 

               , , , ( , )
, , , ,

x i j A x i j B w i j E sat K x i j
i j i j i j i j   

    , 

               , , , ( , )
, , , ,

z i j C x i j D w i j F sat K x i j
i j i j i j i j   

   , 

, 0,1,2i j .  (4) 

Let   be the set of all diagonal matrices in 
n nR 

 with 

diagonal elements that are either 1 or 0 . For example, if 

2n  , then  

  0 0 0 0 1 0 1 0
, , , , , , .

1 2 3 4 0 0 0 1 0 0 0 1
D D D D

 
        
        
                

    

There are 2n
 elements pD

 
in  , and for every 

1,...,2np , D I Dp n p
   is also an element in  . 

For taking actuator saturation nonlinearity we will embed 

    a i, j
sat K x i, j  within a convex hull of a group of 

linear feedbacks. For a positive definite matrix 
n nP R 

and a scalar 0  , an ellipsoid  ,P   is defined as: 

        , , : , , .
TnP x i j R x i, j Px i j D Z        

Define the following polyhedral set  L H : 

      : : 1, 1,2,...,n

lL H x i, j R H x i, j l m    , 

Where lH  is the l -th row of matrix H . 

Remark 1 In this paper, it is assumed that switching occurs 

only at each sampling point of i  or j . The switching 

sequence can be described as, 

    0 0 0 0, , ,i j i j ,     1 1 1 1, , ,i j i j ,…,     , , ,i j i j    ,… 

with  ,i j   
denotes the  -th switching instant. It 

should be noted that the value of  ,i j  only depends on 

i j  (see [17]). 

Definition 1 [1] Discrete 2-D switched system (1) is 

asymptotically stable under switching signal  ,i j if 

,

sup ( , )
i j

x i j    and  
,
lim , 0

i j
x i j


  under  , 0w i j   

and any boundary condition  sup 0,h

j

x j    and 

 sup ,0v

i

x i   . 
Definition 2 [1] Given a positive scalar  , and two 
symmetric and positive definite matrices 

1R  and 
2R , the 

discrete 2-D switched system (1) is said to have a 
prescribed

H disturbance attenuation level   if it is 
asymptotically stable and satisfies: 

         2

2

22

20 ,

2 12
0 0

sup

,0 ,0 0, 0,
w i j l vT v hT h

i j

z
J

w x i R x i x j R x j


 

 

 

 

  

 

(5) 

Remark 2 For the case when the boundary condition is 

known to be zero, the inequality (5) reduces to 

  2

2

22
0 2

0 ,
2

sup
w i j l

z
J

w


 

  ,             (6) 

Lemma 1 [24] Given K and 
m nH R  , then 

       , , 1,2,...,2m

P Psat Kx i, j co D K D H x i j p   , 

 , nx i j R  ,       (7) 
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that satisfy  , 1lH x i j  , for 
lH , 1,2,...,l m . 

{ }co , is convex hull. 

When  x L H , it follows that 
    ,

a i, j
sat K x i j  

satisfies the condition (7) of Lemma 1. Then substituting (7) 

to system (4), and noticing the relationship between convex 

combination and its vertex, we can obtain the following 

representation for =1,2, ,2mp . 

         , ,
, , ,p

i j i j
x i j A x i j B w i j

 

   , 

         , ,
, , ,p

i j i j
z i j C x i j D w i j

 
  ,          (8) 

where, 

           , , , , ,
.p

P Pi j a i, j i j i j i j i j
A A E D K E D H
    

    

           , , , , , ,
.p

P Pi j i j i j i j i j i j
C C F D K F D H
     

    

3. MAIN RESULTS 
In this section, we investigate the problem of controller 

design for system (1) to ensure that closed-loop system (4) 
is asymptotically stable and has 

H  
disturbance 

attenuation level  .  
3.1. H

 
PERFORMANCE ANALYSIS 

In this subsection, the problem of 
H  performance 

analysis of 2-D switched systems is discussed. 
Theorem 1 Given a positive scalar  , and two symmetric 
positive definite matrices 

1R and 
2R , if there exist a set of 

block-diagonal, symmetric and positive definite matrices

 1 2, 0k k

iP diag P P  , and matrix 
kH , k N , such that 

2

( ) 0

* 0 ( )
0

* *

* * *

k k l l P l l P l k l
T

l l l P l l P l
T

l

P P A E D K E D H P B

P C F D K F D H

I D

I







   
   
  

 
  

,

 , .k l N N                     (9a) 

 2

1 2, .kP diag R R            (9b) 

   ,1 .k kP L H            (9c) 

then 2-D switched system (4) is asymptotically stable and 

has a prescribed 
H  disturbance attenuation level 

 
for 

any arbitrary sequence of switching. 

Proof When  ( ) ,1ix i, j P , then we choose the 

Lyapunov function candidate for system (4) as follows: 

       ,
, , , ,T

i j
V i j x i j P x i j




             
(10) 

where, 

 
   , ,

1 2,
{ , }.

i j i j

i j
P diag P P

 


               (11) 

 , ( ) ( ).V i j V i, j V i, j              (12) 

Set, ( ) 0w i, j  , along the trajectory of system (4), we have  

     
 

 

 

 

   
 

 

 

 

1,

1

, 1

2

,

1

,

2

0 1,
, 1, , 1

, 10

0 ,
                , , , .

,0

             

i j h

hT vT

vi j

i j h

hT vT

vi j

P x i j
V i j x i j x i j

x i jP

P x i j
x i j x i j

x i jP













   
              

   
      

    

    

(13) 

Note that  1,i j  =  , 1i j  , then (13) can be 

written as 

     
T T

1, ,
, ( ) ( ) ( ) ( ).

i j i j
V i j x i, j P x i, j x i, j P x i, j

 

 


  

   

 
(14) 

There is no loss of generality if we assume that k -th 

subsystem is activated at i j , k N  
that is  ,i j k  . 

When no switching occurs at 1i j  , in other words k -th 

subsystem is still active at 1i j  , one can obtain 

   , 1,i j i j k    , then one has 

         , , , , , .T T

k kV i j x i j P x i j x i j P x i j     

    (15) 

 From, (9a) it follows that k -th subsystem is 

asymptotically stable. 

When l-th subsystem is activated at 1i j   
that is, 

 1,i j l   , we get 

         , , , , , .T T

k lV i j x i j P x i j x i j Px i j     (16) 

It follows (9a), the Lyapunov function is decreasing at 

switching instants. Therefore, closed-loop system (4) with 

( , ) 0w i j   is asymptotically stable. 

For any nonzero     2( , ) 0, , 0,w i j l    closed-loop 

system (4) has a prescribed 
H disturbance attenuation 

level  . For this purpose, we introduce 

           2, , , , , , .T Ti j V i j z i j z i j w i j w i j             

(17) 

That is, 

 , ( , ) ( , ).Ti j i j i j                       (18) 

Where,    ( , ) , ,
T

T Ti j x i j w i j    
 and 

                     

                   

, 1, , , , , , 1, , , ,

2

, 1, , , , , 1, , , ,

.

pT p pT p pT pT

i j i j i j i j i j i j i j i j i j i j i j

T p T p T T

i j i j i j i j i j i j i j i j i j i j

A P A P C C A P B C D

B P A D C B P B D D I

          

         




 

 

   
 

    

 

Applying Schur’s Lemma it follows from (9c) that, 

0.                  (19) 

That implies, 

         2, , , , , 0.T TV i j z i j z i j w i j w i j         

 (20) 
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It follows that, 

           2

0 0 0 0

, , , , , .T T

i j i j

z i j z i j w i j w i j V i j
   

   

     

  (21) 

From (15) one can obtain 

             

           

1, ,

1 1

, 1 ,

2 2

, 1, 1, , ,

              , 1 , 1 , , .

i j i jhT h hT h

i j i jvT v vT v

V i j x i j P x i j x i j P x i j

x i j P x i j x i j P x i j

 

 





    

     

  

(22) 

Denoting, 

           1, ,

1 11, 1, , , .
i j i jhT h hT hM x i j P x i j x i j P x i j

 
   

           , 1 ,

2 2, 1 , 1 , , .
i j i jvT v vT vN x i j P x i j x i j P x i j

 
   

 

  
(23) 

From (23) it should be noted that    1, , 1i j i j    , 

since the value of ( , )i j  only depends on ( )i j . For any 

positive scalars 1n ,
2n Z .We can write  

 

            

1 2 1 2 1 2

2

1

0 0 0 0 0 0

1, 0,

1 1 1 1

0

,

1, 1, 0, 0,

n n n n n n

i j i j i j

n
n j jhT h hT h

j

V i j M N

x n j P x n j x j P x j
 

     





  

   

  



 

    
1

2, 1 ,0

2 2 2 2

0

( , 1) ( , 1) ( ,0) ( ,0) .
n

i n ivT v vT v

i

x i n P x i n x i P x i
 



     

  (24) 

When, 1n ,
2n   , then we obtain 

        2

0 0

, , , ,T T

i j

z i j z i j w i j w i j
 

 

  

             0, ,0

1 2

0 0

0, 0, ,0 ,0 .
j ihT h vT v

j i

x j P x j x i P x i
 

 

 

    

    (25) 

From (9b) and (9c) we know that 2

1 1

kP R  and 

2

2 2

kP R , k N  . Then (25) becomes 

         2

0 0 0 0

, , , ,T T

i j i j

z i j z i j w i j w i j
   

   


 


   

         1 2

0 0

0, 0, ,0 ,0 .hT h vT v

j i

x j R x j x i R x i
 

 


  


    

    (26) 

From (26), it can be obtained that, 

      
2

2
0 0

, , , ,T

i j

z i j z i j z i j
 

 



      
2

2
0 0

, , , .T

i j

w i j w i j w i j
 

 


    

(27) 

That is 

             
2 22

1 22 2
0 0

, , 0, 0, ,0 ,0 .hT h vT v

j i

z i j w i j x j R x j x i R x i
 

 

 
   

 
 

(28) 

This completes the proof. 

3.2. H
 
CONTROLLER DESIGN 

In this subsection, the 
H  controller design problem of 

2-D switched systems is addressed. 

Theorem 2 Consider discrete 2-D switched system (1) with 

actuator saturation, for given positive scalar 
 

and 

symmetric positive definite matrices,  1 2,R diag R R , if 

there exist a set of positive definite matrices 

 1 2,k k kX diag X X
 

and matrices kY , kW  with k N , 

satisfying 

2

0

* 0
0,

* *

* * *

k

l
l

T

l

X B

X

I D

I



  
  
  

 
  

( , ) .k l N N    (29a) 

2 1,lX R   .l N                      (29b) 

1
0.

l

l

W

X

 
 

 

                            (29c) 

with, 

,l l l

l l p l PA X E D Y E D W    ( ) ,l l l T

l l p l PC X F D Y F D W   

1 1

1 1 2 2 1 2[ ( ) ( ) ] [ ],l l l l l l

lK Y X Y X K K    

1 1

1 1 2 2 1 2[ ( ) ( ) ] [ ].l l l l l l

lH W X W X H H    

Then the corresponding closed-loop system (4) is said to be 

asymptotically stable and possesses 
H  disturbance 

attenuation level  . 

Proof Pre- and post- multiplying (9a) by 
    1 1

, , ,k ldiag P P I I
 

 
we get 

1 1

1 1

2

( ) ( )( ) 0

* ( ) 0 ( )( )
0.

* *

* * *

k l l p l l P l l l

T

l l l l p l l P l

T

l

P A E D K E D H P B

P P C F D K F D H

I D

I



  

  

   
 

    
 
    

(30) 

Let, 1( ),l

lX P
1( ),k

kX P
1( ),l

l lY K P 1( ).k

l lW H P
 

then 

(30) becomes 

2

0

* 0 ( )
0.

* *

* * *

k l l l

l l p l P l

l l l l T

l l p l P

T

l

X A X E D Y E D W B

X C X F D Y F D W

I D

I







   
 

    
 
    

 

(31) 

Let, 
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,l l l

l l p l PA X E D Y E D W   
 

( ) ,l l l T

l l p l PC X F D Y F D W    ( , ) .k l N N    

It can be obtained that (31) is equivalent to (29). Thus, 

we can deduce that the given closed-loop system (4) with 

actuator saturation is asymptotically stable and has 
H  

disturbance attenuation level   for any arbitrary switching 

sequence. 

This completes the proof. 

Remark 3 It should be pointed that the results presented in 

Theorem 2 can be considered as an extension of results 

presented in [27] to the problem of 2-D discrete switched 

systems with actuator saturation. To the best our knowledge, 

there are no results available on the problem of state 

feedback 
H  control of 2-D switched systems with 

actuator saturation therefore direct comparison is not 

possible. 

4. NUMERICAL EXAMPLE  

This section presents the simulation example to ensure the 

validity of above proposed results.  

Consider the following equation which describes some 

thermal process, for example in chemical reactors, heat 

exchangers and pipe furnaces [2]. 

( , ) ( , ) ( , )( , ) ( , )
( , ) ( , ) ( ( , )).x t x t x tT x t T x t

a T x t b w x t e sat u x t
x t

   
    

 

(32) 

( , )T x t  
is the temperature of the process at 

( ) [ , ]fx Space o x
 

and ( ) [ , )t Time o  . ( , )u x t  
is the input 

function. ( , )x ta ,
( , )x tb

 and 
( , )x te  are real coefficients. 

Initial goal is to represent the above stated 2-D model 

conversion to 2-D discrete state space Roesser model. 

Taking, 

( , ) ( , ),T i j T i x j t    ( , ) ( , ),w i j w i x j t    

( , ) ( , ).u i j u i x j t    

( , ) ( , 1) ( , )
,

T x t T i j T i j

t t

  


 
 ( , ) ( , ) ( 1, )

.
T x t T i j T i j

x x

  


 
 

Then we can obtain following Roesser’s model 

( , ) ( , )( , )

0 1
0 0( 1, ) ( , )

( , ) ( , ).
1( , 1) ( , )

h h

x t x tx tv v

x i j x i j
w i j u i jt t

b t e ta tx i j x i j
x x

 

 
                              

  

 

For numerical simulation choose time and the space 

discretization period as: 

t  = 0.5, x = 0.3, Now it is assumed that 2-D discrete 

switched system has two subsystems with, 1a =0.1, 2a =0.3, 
1b =0.2, 2b =0.1, 1e =0.5 and 2e =0.6 then we will have 

following set of parameters for the approximated process. 

Subsystem 1 

1

0 1
,

1.67 0.72
A

 
  

 

 

1

0
,

0.25
E

 
   

 

1

0
,

0.1
B

 
   

 

1 [0 1],C    
1 1,D   

1 0.F   

Subsystem 2 

1

0 1
,

1.67 0.82
A

 
  

 

1

0
,

0.3
E

 
   

 

1

0
,

0.05
B

 
   

 

2 [0 1],C    
2 2,D   

2 0.F   

Take 10 , 
1 1R  , 

2 (1,1)R diag , and the 

disturbance input 1
( )w k

i
 , the boundary condition is 

given as follows: 

2
(0, )hx j

j
 , 0 15j  ; (0, ) 0hx j  , 15 .j  

2
( ,0)vx i

i
 , 0 15i  ; 

1 ( ,0) 0vx i  , 15 .i  

Solving the matrix inequalities in Theorem 2 with, 

1 1n   ,
2 1n  , gives rise to: 

1

0.0576 0
,

0 0.0438
X

 
   

 

2

0.0674 0
,

0 0.0441
X

 
   

 

 1 0.3850 0.1262 ,Y     2 0.3752 0.1207 ,Y    

 1 0.2038 0.1072 ,W     2 0.2179 0.1058 ,W    

 1 6.6800 2.8840 ,K    2 5.5667 2.7368 ,K    

 1 3.5361 2.4502 ,H    2 3.2332 2.3991 .H    

Figure 1 and Figure 2 depicts the trajectories of 

horizontal and vertical states ( , )hx i j and ( , )vx i j  

respectively. It can be concluded from Figures that 

closed-loop system (4) is asymptotically stable. The 

corresponding arbitrary sequence of switching is shown by 

Figure 3. 
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Figure 1 State trajectory of horizontal state ( , )hx i j . 

 

Figure 2 State trajectory of vertical state ( , )vx i j . 

 

Figure 3 The switching signal. 

5. CONCLUSION 

State feedback 
H  controller design problem for 2-D 

discrete switched systems with actuator saturation has been 

investigated in this paper. By utilizing the multiple 

Lyapunov functional approach, necessary and sufficient 

condition for asymptotical stability of corresponding 

closed-loop system with a prescribed 
H  disturbance 

attenuation level   is proposed. Our future work shall 

focus on the extension of the proposed control methodology 

for 2-D continuous-discrete switched systems which is still 

an open problem. 
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