
Sci.Int.(Lahore),27(5),4181-4185,2015 ISSN 1013-5316; CODEN: SINTE 8 4181

Sept.-Oct.

ANALYSIS OF REVERSE AND FORWARD ENGINEERING BY USING FUNCTION POINT AND
LINE OF CODE

Ayesha maqsood
1
, Nayyar Iqbal

2
, Iqra ayub

3

Department of Computer Science, University of Agriculture, Faisalabad Pakistan

Corresponding Author: ayeshamaqsood75@yahoo.com1

nayyariqbal@uaf.edu.pk2

ABSTRACT: The purpose of this research was to conduct the analysis of reverse and forward engineering by calculating the

function point and line of code of software. In this research the main purpose was to analyze which one is better approach

forward engineering or reverse engineering. It was difficult for software engineers to decide whether reverse engineering or

forward engineering approach is cost effective in the existing software in order to modify it. In this research forward and

reverse engineering approaches were applied on same software. In this research complete estimation of number of developers

required for development was determined. The analysis conducted also determines in which approach the number of error or

defects percentage was more, time required to develop the software and cost estimation was more. This analysis also

determines the numbers of developers required for software development. The results represented by graphs indicating the

developers required, time required to develop the software, number of errors or defects occurrence.

Keywords: Forward engineering, reverse engineering, function point, line of code, complexity

1. INTRODUCTION
Information technology involves all types of technologies

that includes production, storage, installation and

implementation of computer science and use all these

information’s in different forms. From this information can

be retrieved and store. That can also transmit information [4].

Software engineering involves the construction and

maintenance of products. It is also engineering profession

involved in designing. The theories, methods and tools are

applied. These methods are applied where these tools and

theories are properly applied [1].

At higher levels, software engineering has two types of

engineering, which is reverse engineering and forward

engineering.The engineering play vital roles in the software

industry. Forward engineering is the engineering which

moves from high level to low level abstraction. In this the

high level model or concepts are building to low level details

[2].

 It has various principles in software database. It is very

important in IT because it describes the normal process. In

this the models are formed from the codec set [7]. It is a

traditional process to the physical execution of system. In

some situation it is without any technical details like thermal

and electrical properties [5].

Fig. 1: cmaprison of Forward and Reverse engineering

Reverse engineering is another aspect of software

engineering, it works in order to duplicate or enhance the

object. Reverse engineering is the process of duplicate the

existing objects. It moves from low level abstraction to high

level. In this the codec set is developed from the existing

model. It is backward engineering. It is the process of re-

engineering. Reverse engineering compress the product

development times. Reverse engineering is the contradiction

of forward engineering [11].

The reverse engineering process can be understood by the

example, assume you want to run the fan in your office by the

two switches. You can switch on or off with any kind of

switch. The logic of current is simple, that if one switch is up

and the other one is down then the fan will run when both

switches are up or both or down it will go off. So the logic is

equal to the exclusive OR gate. You can understand the

electrical circuits in this way easily and you can also easily

design it. This is the reverse engineering [6].

In software systems, the function points play an important

role. In early stages the software system could not thoroughly

understand. With the passage of time the tools are developed

in order to understand the systems. The function point plays a

vital role to solve this problem. In this the code is divided

into different smaller components and better understands and

analyzed. Function point is the measurement for the software

to understand it like an hour for measurement of time,

kilometer for distances, etc. everyone understands their

problems by dividing it into different pieces, Classes and

categories. Function points measure the functional

requirements of the system that are applied before

development [12].

Line of code in a software program shows the complexity of

software. If the less line of code in the program is less

complex and if the more line of codes the program is more

complex. Line of code shows the lines of a program code.

LOC measures the volume of the program [9]. It is also uses

to compare the program that use the same language and same

coding standards. That measures the complexity of program

input and output. It measures the size of the program and

determines the effort that will require developing a program.

Function point and line of code measures by developing the

mailto:ayeshamaqsood75@yahoo.com

4182 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(5),4181-4185,2015

Sept.-Oct.

system using the platform of forward engineering and same

system develop on the platform of reverse engineering[13].

2. METHODOLOGY
 In this research, the software is developed and then on same

software applied both forward and reverse engineering.

Calculate the both function point and line of code of both

engineering and then analyze that which one is better. Then

decision will be taken on the basis of less and more line of

code. Which one has less line of code and function points that

is better and less complex than the other. It will help in the

future to select the best and appropriate engineering in our

research.

 FP analysis technology is considered to be an early and

effective sizing software count standard, but usually there's a

complete and detailed look at behavior set be measured any

software for the availability of documents the interplay of

functional requirements for the application user refers to.

There are circumstances in which estimation method of at least

two compatible, but the alternative could be decisive for FP

standard rules. This software or development of such a plan

in the early stages, it is only one FP count (feasibility study),

it is not possible to perform according to the quality when the

first case. As a standard, in fact, are not identifiable at the

start of a project is always based on the reviews, however,

size, time and price predictions need to be indeed stronger

than functional details at the end of the stage, when there is a

need to identify elements [19].
It's so easy to measure time. It is very easy to measure

distance, too. Temperature, speed and etc. Miles, for hours,

degree it's pretty understandable matrix. When it comes to

estimating a software project or an application for measuring

the problem occurs. How to measure this application [17].

There are countless theories-worse than each other though.

This problem is a growing complexity, spare no direct

methods can be used. So much time, number of lines of

code, the application will be most meaningful, but I thought

that it should not at all the way [3]. Numerous programming

languages basically can be used to reach a goal. Each of these

languages and the quantity of data and code lines is different-

as a result-the need for a different number. Due to a complex

application, written in C, Visual Basic, for example letters

designed to consist of only two hundred thousands of lines

[8].
Software size may be estimated either in terms of KLOC

(Kilo Line of Code) or by calculating thenumber of function

points in the software. Lines of code depend upon coding

practices and Function points vary according to the user or

software requirement [14].
The managers estimate efforts in terms of personnel

requirement and man-hour required to produce the software.

For effort estimation software size should be known. This can

either be derived by managers’ experience, organization’s

historical data or software size can be converted into efforts

by using some standard formulae [16].

Function point analysis (FPA) is a methodology for

measuring software productivity and the cost associated with

the development and maintenance. One function point (FP) is

one end-user requested business function [18].
In this initially the project of BATA was developed in C# in

which average complexity was considered because some

component were already present in developed systems

already installed in working condition in the market and some

were totally new.

Table. 1: Complexity Value Table

 Estimated

Count

average

Complexity

No. of Inputs 42 4

No. of outputs 15 5

No. of Inquiries 3 4

No. of files 26 10

No. of Interfaces 1 7

The fourteen question values for this case ∑ F1- F14= 53 FP

Calculation [3] FP= UCF * TCF

UCF= Estimated count * Complexity Factor

Table. 2 : Calculated UCF

(42) * (4) = 168

(15) * (5) = 75

(3) * (4) = 12

(26) * (10) = 260

 (1) * (7) = 7

Total UCF= 522

TCF= 0.65 + 0.01 * ∑ F1 – F14

 =0.65 + 0.01 * 53

 TCF = 1.18

So the FP= 522 * 1.18

 = 616

Line of Code Calculation [3]

Line of Codes of BATA software developed in C# language

application is 1667

So in initial software, the FP are 616 and LOC 1667 are for
C#. Labor rate per month is $1000 and Productivity is
20FP/month

Cost/FP = 1000/2

 = $50

Total Bata project cost = 50 * 616

 =$30,798

Effort in person Month = total project cost / labor

rate/month

 = 30798/1000

Effort in person Month= 31

Using Reverse engineering

In this applied reverse engineering on the initially developed

application and add purchase components in C # BATA

software and considered its complexity average because in

this application developed two components add purchase

item and purchase status which are not included in the

application in C # and then Calculate its FP and LOC as

follows

Sci.Int.(Lahore),27(5),4181-4185,2015 ISSN 1013-5316; CODEN: SINTE 8 4183

Sept.-Oct.

Table. 3: Complexity Value Table

 Estimated

Count

average

Complexity

No. of Inputs 56 4

No. of outputs 20 5

No. of Inquiries 3 4

No. of files 29 10

No. of Interfaces 1 7

The fourteen question values for this case∑ F1- F14= 55 FP

Calculation [3] FP= UCF * TCF

UCF= Estimated count * Complexity Factor

Table. 4: Calculated UCF

(56) * (4) = 224

(20) * (5) = 100

(3) * (4) = 12

(29) * (10) = 290

 (1) * (7) = 7

Total UCF= 633

TCF= 0.65 + 0.01 * ∑ F1 – F14

 TCF=0.65 + 0.01 * 55

TCF = 1.2

So the FP= 633 * 1.22

FP=759

 Line of Code Calculation [3]

Line of Codes for C# language application are 1821

So the FP are 759 and LOC are 1821 for C# Labor rate per

month is $1000 and Productivity is 20FP/month

Cost/FP = 1000/20

 = $50

Total Bata project cost = 50*759

 =$37950

Effort in person Month = total project cost / labor

rate/month

 = 379500/1000

Effort in person Month= 37.95

Table. 5 Comparison of FP, LOC and Cost
Case 1 Initial

applicatio

n

After reverse

engineering

Function point

616 =initial project FP+

new FP developed

= 616+143
=759

Line of code

1667 =initial project

LOC+ new LOC

developed

=1667+154

=1821

Total cost

30798 =initial project cost
+ new components

developed cost

=30798+7950
=38,748

Number of

developer

31 38

In this case function point, line of code and cost of reverse

engineering case is greater than the initially developed

application because new components are added.

Case#2
In this I developed a VB application for BATA, by

converting C# application of BATA. Its complexity factor

was considered complex because in the market no project

was available in the VB in the market and calculate its FP and

LOC as follows:

 Table. 6: Complexity Value Table
 Estimated

Count

Complex

Complexity

No. of Inputs 56 6

No. of outputs 20 7

No. of Inquiries 3 6

No. of files 21 15

No. of Interfaces 1 10

The fourteen question values for this case ∑ F1- F14= 55 FP

Calculation [3] FP= UCF * TCF

UCF= Estimated count * Complexity Factor

 Tab. 7: Calculated UCF
(56) * (6) = 336

(20) * (7) = 270

(3) * (6) = 18

(21) * (15) = 315

 (1) * (10) = 10

Total UCF= 949

TCF= 0.65 + 0.01 * ∑ F1 – F14

 =0.65 + 0.01 * 55

TCF = 1.15
So the FP= 1049 * 1.15

 FP=1091

 Line of Code Calculation [1]

Line of Codes for VB language application are 1926 Labor

rate per month is $1000 Productivity is 200FP/month
Cost/FP = 1000/20
 = $50

Total Bata project cost = 50 * 1091

 = $54,550

Effort in person Month = total project cost / labor

rate/month

= 54550/1000

Effort in person Month= 54.550

Tab. 8: Comparison of FP, LOC and cost
Case 2 Reverse

Engineering

Forward

Engineering

Function point 759 1091

Line of code 1821 1926

Total cost 38,388 54,550

Number of

Developers

38 54

Number of Errors &
defects

15 7

RESULT AND DISCUSSION
A Calculating the result of two cases, in this analysis compared th

both cases of Forward engineering and Reverse engineering. In

Foforrward engineering application is developed in VB and in

Rereverse engineering developed same interface application in C#

an and Reverse engineering is better because function point and

4184 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(5),4181-4185,2015

Sept.-Oct.

linline of code and cost is less than the forward engineering and

more error and defects was occurred in forward engineering that’s

why Reverse engineering g is better than the forward engineering

and its shows the difference between these two Engineering.

FP evaluation result shown in form of pie chart and shown the

ratio of percentage of FP effecting the FE and RE as follows:

Fig. 2: FP evaluation Ratio

Fig. 3: LOC evaluation Ratio

Fig. 4 : error and defect rate in F.E and R.E

Fig. 5 No. of developer and Time in F.E nad R.E

3. CONCLUSION
In this study after seeing all these results we can say that the

Reverse Engineering is better than Forward Engineering. In

any organization we can calculate the project time, cost,

person and all other things which effect the project

productivity. Without a reliable sizing metric relative changes

in productivity (Function Points per Work Month) or relative

changes in quality (Defects per Function Point) cannot be

calculated. If relative changes in productivity and quality can

be calculated and plotted over time, then focus can be put

upon an organizations strengths and weaknesses. Most

important, any attempt to correct weaknesses can be

measured for effectiveness.

4. REFERENCES

[1] Lee, N. Y. L. (2013). A theory of reverse engineering and

its application to Boolean systems, (April), 37–41.

[2] Prof, A. (2013). A Review of Reverse ngineering

Theories and Tools Ramandeep Singh, 2(1), 35–38.

[3] Ying, W. (2013). Protocol reverse engineering

through dynamic and static binary analysis,

20(December), 75–79.

[4] Brunelière, H., Cabot, J., Dupé, G., & Madiot, F.

(2014). MoDisco: A model driven reverse engineering

framework. Information and Software Technology,

56(8), 1012–1032.

[5] Jin, D., Cordy, J. R., & Dean, T. R. (2003). Transparent

Reverse Engineering Tool Integration Using a

Conceptual Transaction Adapter, (March), 399–408.

[6] Conejero, J. M., Rodríguez-Echeverría, R., Sánchez-

Figueroa, F., Linaje, M., Preciado, J. C., & Clemente, P.

J. (2013). Re-engineering legacy Web applications into

RIAs by aligning modernization requirements, patterns

and RIA features. Journal of Systems and Software,

86(12), 2981–2994.

[7] Deursen, A. Van, & Burd, E. (2005). Software reverse

engineering. Journal of Systems and Software, 77(3),

209–211.

[8] Felfernig, a, & Salbrechter, a. (2004). Applying function

point analysis to effort estimation in configurator

development. International Conference on Economic,

Technical and Organisational Aspects of Product

Configuration Systems, Kopenhagen, Denmark, 109–

119.

55% 45%

FUNCTION POINT

FE FP

RE FP

56%
44%

LINE OF CODE

FE LOC

RE LOC

0
2
4
6
8

10
12
14
16

defect rate error rate
fowarard engineering reverse engineering

0%

10%

20%

30%

40%

50%

60%

70%

No of developer Time

Sci.Int.(Lahore),27(5),4181-4185,2015 ISSN 1013-5316; CODEN: SINTE 8 4185

Sept.-Oct.

[9] Jeffery, D. R., Low, G. C., & Barnes, M. (1993).

Comparison of function point counting techniques.

IEEE Transactions on Software Engineering, 19(5),

529–532.

[10] Kumar, V., & Pandey, S. (2013). Accurate Software

Size Estimation Using the Updated Function Point

Analysis Model. International Journal of Advanced

Research in Computer and Communication Engineering

Vol. 2, Issue 6, June 2013, 2(6), 1–3

[11] Lavazza, L., & Tosi, D. (2014). Using Function Point

Analysis and COSMIC for Measuring the Functional

Size of Real-Time and Embedded Software : a

Comparison, 7(1), 330–340.

[12] Orr, G., & Reeves, T. E. (2000). Function point

counting: One program’s experience. Journal of

Systems and Software, 53(3), 239–244.

[13] Sheetz, S. D., Henderson, D., & Wallace, L. (2009).

Understanding developer and manager perceptions of

function points and source lines of code. Journal of

Systems and Software, 82(9), 1540–1549.

[14] You, S., & Chen, L. (n.d.). Reverse and Forward

Engineering of Frequency Control in Power Networks.

[15] Lee, J., Avgerinos, T., & Brumley, D. (2011). TIE:

Principled Reverse Engineering of Types in Binary

Programs. Network and Distributed System Security.

[16] Sandhu, R. (2013info Reverse Engineering Of Web

Applications : An Emerging Trend, 4(10), 569.

[17] Raja, V. (2008). Introduction to reverse engineering.

Reverse Engineering, 1–10.

[18] Boehm, B., Abts, C., & Chulani, S. (2000). Software

development cost estimation approaches. A survey.

Annals of Software Engineering, 10, 177–205

[19] Borade, J. G., & Khalkar, V. R. (2013). Software Project

Effort and Cost Estimation Techniques. International

Journal of Advanced Research in Computer Science and

Software Engineering, 3(8), 730–739.

