
Sci.Int.(Lahore),27(5),4205-4209,2015 ISSN 1013-5316; CODEN: SINTE 8 4205 

Sept-Oct. 

DEVELOPING AN EFFICIENT ALGORITHM FOR THE POSE ESTIMATION 
PROBLEM WITH SOME APPLICATIONS IN COMPUTER VISION AND 

ROBOTICS 
Wajeb Gharibi 

College of Computer Science, Jazan University, Jazan, KSA, 

Email: Gharibi@jazanu.edu.sa 

: In Computer vision and robotics, a typical task is to identify special objects of an image to determine each object’s position 

and orientation relative to some coordination systems. The pose of an object is the combination of its position and orientation. 

This information can be used, for example, to allow a robot to manipulate an object or to avoid moving into the object. Post 

estimation, also known as the Perspective-n-Point Problem (PnP), is to estimate the pose of the camera based on the given 3D 

reference points and their associated 2D images. It is one of the important problems in computer vision, photogrammetry and 

robotics. In this paper, we design more effective, fast and efficient branch and bound algorithm for the pose estimation 

problem which will help us to get an optimal solution as well as a number of local optimal solutions. As applications, we 

design a tighter convex relaxation algorithm for the graph matching problem and establish the global model for the 

fundamental matrix recovery problem of candidate corresponding points in stereo vision. 
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1. INTRODUCTION 
Pose estimation, also known as the perspective endpoint 

problem (PnP), is to estimate the pose of the camera based on 

the given 3D reference points and their associated 2D images 

[7,17,18]. Pose estimation problem is considered as one of 

the most important problems in computer vision, 

photogrammetry and robotics. The solution methods for 

solving pose estimation problem can be divided into the 

following three groups: The first group is composed of the 

iterative local search method ([2, 3, 8-10, 12, 22]). The 

orthogonal iteration (OI) Algorithm [8, 19, 23], may be the 

most efficient. The basic idea of OI algorithm is to minimize 

object space error by alternatively minimizing the estimation 

of the rotation matrix and the translational vector. Starting 

from a proper initialization, the OI algorithm often-fast 

coverage to a high-accuracy-global minimizer. But if it is 

poorly initialized, OI could get trapped in a local minimizer. 

The second group is made up of the iterative global 

optimization methods. [1, 28, 29] proposed a branch-and-

bound algorithm to solve the triangulation and camera pose 

estimation, where the objective function is fractional. The 

lower bounding approach is to solve the second order cone 

programming (SOCP), relaxation, by noting that a single 

fraction t/s with bounded s and t can be rewritten as an SOCP 

[16, 20, 21]. This algorithm was further employed by [11] to 

minimize the image space error, where the rotation matrix 

was parameterized by quaternion. [5] developed a branch-

and-bound method to minimize the   norm of the tangent 

of the angle error, based on SOCP relaxation. Through 

providing the solution of proven global optimality, the 

branch-and-bound methods are of limited application in 

practice because of their high computational complexity. For 

example the average running time reported in [5] is 1.5 

minutes for 10 reference points.  

The third group consists of the non-iterative methods ([4, 6, 

24-27]). The pose estimation problem is first reformulated to 

a single (large) equation system, then the system is 

approximately solved in order to gain the speed. Recently, 

[12-14] proposed the semi definite relaxation (SDR) 

approach by lifting the quaternion model of the pose 

estimation problem, moreover, to perform better, the standard 

SDR often gives a solution close to the global minimize, even 

for small number of points and large noise. The limitation is 

that the accuracy of the solution obtained by SDR is lower 

than that of OI. 

To our knowledge, the branch-and-bond algorithm for 

minimizing the object space error (which is the same cost as 

in OI and SDR) has not been studied in literature. Suppose 

now we directly employ the branch-and-bound algorithm 

developed in [1] to minimize the object space error, at first 

we have to introduce how much more additional variables to 

linearize the cost function, which certainly is far from 

efficient. In this paper, we observe that the object space is 

already a convex quadratic function. It motivates us to 

develop a new branch-and-bound, method based on quadratic 

programming (QP) relaxation. To improve the efficiency, we 

establish a tighter Lagrangian reformulation of the quadratic 

object space error.  

2. RESEARCH PROBLEM: FORMULATIONS AND 
RELAXATIONS 

The main research problem is how to branch and construct a 

compact lower bound for the branch and bound algorithm of 

the pose estimation problem. 

There are some branch and bound methods for nonlinear 

objectives in literatures. While the drawback is the loose 

relaxed lower bound causing excessive branching, the 

algorithms take a long time. In our paper, we will design 

branch and bound for linear target directly, but how to 

construct a tighter lower bound is a similar problem. Noting 

the secondary objective function has many variations, 

happens to anyone of Lagrangian function under orthogonal 

constraints is equal to the original target, which gives us the 

selected source of compact lower bound. In addition, how to 

branch is also the key to determine the efficiency of 

algorithm, the literature of traditional branch and bound is 

standard without considering the structure of the problem. 

The paper attempts to develop efficient branches with 

utilization of the structure. 

Given a set of 3D reference points )3(,...,2,1,  nnipi
in 

the object coordinate system and the associated normalized 
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2D image projections  in the camera coordinate system, we 

minimize the following object space error [12]:  
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where S(3) is the set of 3 × 3 orthogonal matrices, I is the 3 × 

3 identity matrix, ∥ · ∥ is standard l2-norm, and: 
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Since (1) is an unconstrained quadratic program in terms of t, 

by setting the partial gradient of (1) with respect to t equal to 

zero: 
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we can get the optimal translation vector [15, 23]:  
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As in [23], define the following operators for the 3D vector p 

and 3 × 3 matrix R, receptively, 











































T

T

T

T

T

T

r

r

r

Rr

p

p

p

pC

3

2

1

3131

3131

3131

)(.

00

00

00

)(  

Where 310   is a zero matrix of size 1 × 3 and 

.][ 321

TTTT rrrR   Now we can rewrite (2) as: 
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Substituting (3) into (1) and rearranging the formulation 

yields the following simple model: 
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It is easy to verify that 
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Then (4) has the following three quadratic constrained 

quadratic programming (QCQP) reformulations:  
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Where the idea to add two redundant constraints in (7) is not 

new, see for example, [3, 26].  

For QCQP, Lagrangian dual often provides a high-quality 

lower bound for the primal problem. We first present the 

Lagrangian dual of (7). Let S, T be two symmetric matrices 

of size 3 × 3, respectively. The Lagrangian function of (7) is: 
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Where tr(A) denotes the trace of the matrix A (i.e., the sum of 

all the diagonal entries of A), A ⊗ B denotes the Kronecker 

product of A and B. Then the dual function reads: 
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Where A ≽ 0 denotes that A is positive semi definite. Now, 

the Lagrangian dual problem is: 
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We similarly write the Lagrangian dual problems of (5) and 

(6) as follows: 
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The above three dual problems are all semi-definite 

programming (SDP) problems. They can be globally solved 

by the publicly available optimization tools SeDuMi [15].  

 

3. A NEW BRANCH-AND-BOUND METHOD 
The branch-and-bound algorithm plays a great role in 

globally minimizing the nonconvex problems, see for 

example, [22]. It terminates with a certificate proving that the 

obtained solution is ϵ-suboptimal, by iteratively updating the 

upper and lower bounds on the optimal objective value. 

However, in general, the worst-case complexity of the 

branch- and-bound method grows exponentially with the 

problem size. For this purpose, we rewrite the pose 

estimation problem (4) as 

     
)12()),,((min 1

2,0,02,0),,(



Rf



by observing there is a one-to-one mapping between the 

rotation matrices and the Euler angles: 



Sci.Int.(Lahore),27(5),4205-4209,2015 ISSN 1013-5316; CODEN: SINTE 8 4207 

Sept-Oct. 

)13(

)cos(

)sin()cos(

)sin()sin(

),,(

3231

2221

1211



























RR

RR

RR

R

Where ),sin()sin()cos()cos()cos(11  R  

),sin()cos()sin()cos()cos(12  R  

),sin()cos()cos()sin()cos(21  R  

),sin()sin()cos()cos()cos(22  R  

)sin()sin(31 R and ).sin()cos(32 R  

Denote by )(Qf lb
and  )(Qfub

the lower and upper bounds 

of the objective function over Q, respectively. The following 

general branch-and-bound algorithm presented in [6] is 

employed to solve (20): 

 

Algorithm  

Step 0: Set .0  Initialize k=0, },{ 00 QS   

)( 00 QfL ib    and ).( 00 QfU ub  

Step 1: If , kk LU stop and return an suboptimal

solution 
*R such that   

kURf )( *
otherwise, goto 

step2. 

Step 2: (Branching) Select Q ∈ Sk   such that flb(Q)  

= Lk   and  then  split Q along one of its longest edges 

into Ql  and Qr . More precisely, suppose 

].,[],[],[ 332211
qqqqqqQ   Let 

.2/)().(maxarg 3,2,1 jjjiii qqqqqj  
 If j = 1, 

],,[],[],[ 33221 qqqqqqQ jj
  

].,[],[],[ 3322
qqqqqqQ jjr  When

lQj ,3,2   and  

rQ    are similarly  defined. Let:

.\11 QQQSS rkk 
 Goto step 3. 

Step 3 :(Bounding)  Compute  )( lub Qf  and ).( rub Qf  

Update   the   upper   bound 

)},(),(min{1 rublubkk QfQfUU 
 and the lower bound 

).(min 11 QfSQL lbkk   Update the candidate optimal 

s o l u t i o n  R∗ as the feasible solution corresponding  to 

1kU . Prune:  

})(:{ 1 klb UQfQ from
1kS . Let k:=k+1 and goto step1. 

Now, we discuss in detail the estimation of lower and 

upper bounds, )(Qflb
 and )(Qfub

, which are critical  for 

the efficiency of the branch-and-bound algorithm. 

Suppose the cuboid ].,[],[],[ 332211
qqqqqqQ   It 

follows from the representation (13) that we can easily 

calculate the element-wise lower and upper bounds of R, 

denoted by L and U, respectively.  For  example,  if 

max(q2 , q3) ≤ π/2,  L(3, 1) = sin(q
2

) sin(q
3

) and U (3, 

1) = sin(q2) sin(q3). Define: 

}),,(:),,({)( QRQR    

Then, according to (13), we have: 

)14(}.:)3({)( URLSRQR   

Removing the constraint )3(SR yields a lower relaxation of 

(12): 
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which  is a  box-constrained  convex  quadratic  

programming (QP)  problem  and  hence globally solved 

in polynomial time. In particular, at the root note (i.e., 

Q = Q0), all the entries o f  L  are  −1 and  U = −L. 

Then, we h a v e 0)( 0 Qflb
 without  any need to solve 

(15). The  upper  bound )(Qfub
 is set  as  f1(R∗),  where  

R∗   ∈  R(Q)   is obtained  by  some 
 

heuristic.  Solving (15), we obtain a  solution ma t r i x ,  

denoted  by R
~

 If 3

~
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where ∥ · ∥F  is the Frobenius  norm. Or equivalently, 
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Let 
TUSVR 

~
 be the  singular  value decomposition  

(SVD)  of R
~

,  where U and  V  are orthogonal  matrices  

and S is a diagonal matrix.  As first given in [7], the 

solution  of (16) is 
TUVR *~

 

Finally, we notice that the above branch-and-bound 

algorithm f o r  solving (4) can be similarly employed to 

solve (12)-(14).  Denote these  four algorithms b y  

B&B1, B&B2, B&B3 and B&B4, respectively. 

 

4. DISCUSSION: 
Note that we aim to construct the dual problem and design 

algorithm for the dual problem of orthogonal model 

compactness in the graph matching problem. In the paper, the 

directly dual Lagrangian relaxation of the orthogonal model 

doesn’t been considered, since the relaxation is too loose and 

the result is not satisfactory. We consider how to construct a 

tighter dual problem, we are now introducing some rational 

redundant constraints can export tight dual relaxation 

depending on the empirical theory, and even can fill duality 

gap sometimes. While how to select the constraints and 

construct the dual problem in the paper is a key question. 

Furthermore, if we get the structure of the dual relaxation, 

how to restore the original rotation matrix is also a problem 

to be considered in depth. There are some branch and bound 

methods for nonlinear objectives in literatures. While the 

drawback is the loose,  relaxed lower bound causing 

excessive branching, the algorithms take long time. In this 

paper, we design branch and bound for linear target directly, 

but how to construct a tighter lower bound is a similar 
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problem. Noting the secondary objective function has many 

variations, happensto any one of the Lagrangian function 

under orthogonal constraints is equal to the original target, 

which gives us the selected source of compact lower bound. 

In addition, how to branch is also the key to determine the 

efficiency of the algorithm, the literature of traditional branch 

and bound is standard without considering the structure of the 

problem. The paper attempts to develop efficient branches 

with utilization of the structure. Tighter convex relaxation 

algorithm for graph matching problem. A relaxation by using 

a linear programming relaxation solution as Lagrangian 

multiplier in Lagrangian function is considered in the 

literature, noting that we can mine the upper and lower 

bounds of the variable of the linear programming relaxation 

deeper in order to improve the linear programming model and 

get a new multiplier, then we can obtain a new Lagrangian 

function and design convex relaxation algorithm upon the 

new function. Some details still need to demonstrate and 

research. Establish the  model and design efficient algorithm 

for the fundamental matrix recovery problem of candidate 

corresponding points in stereo vision. 

It is not difficult to establish the overall model, the key is 

how to rewrite the model, It is well known that different 

forms of the equivalent model determine the efficiency of 

algorithms , while the differences may even vary 

considerably. So how to carve an exquisite equivalent model 

is vital. In addition, how to design algorithm is also a crux, 

since there exist different algorithms for a same model, it is 

likely to lead to huge difference. It requires experience and 

numerical experiments repeatedly. 

 

5. CONCLUSIONS: 
In the area of pose estimation, the model of minimizing the 

object space error has been used in many heuristics including 

the well-known orthogonal iteration (OI) and the very recent 

semi-definite programming relaxation (SDR). In this paper, 

we devised a new approach also based on semi-definite 

programming (SDP). SDR method is to use quaternion first 

and then upgrade matrix deformation space for relaxation, 

SOS is a kind of relaxation theory raised to k-order 

polynomial-based space, which can guarantee equivalence 

with the original problem if k is sufficiently large. Literature 

[3,4] both derived SDP relaxations which can be solved by 

the well-known optimization tool SeDuMi, the coefficient 

scale are respectively 117 × 32 and 266 × 70. Is there any 

more effective small-scale SDP relaxation? We consider the 

Lagrangian dual problem on the form of orthogonal 

constraints, the dual problem is equivalent to a semi-definite 

programming problem, if we write the dual problem directly 

the relaxation will be very loose. The paper aims a new 

enhanced method to structure duality. The coefficient matrix 

of new model is much smaller in SeDuMi format under the 

new duality. The further research includes the study of 

theoretical details, how to restore orthogonal matrix from the 

solution of the SDP, and a large number of numerical 

simulations.   
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