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ABSTRACT: Surface Modeling (SM) poses many challenges in Computer Graphics (CG) and Image Processing 

(IP). Conventionally, these shapes are modeled with NURBS surfaces despite of its topological restrictions. In 

this research we try to resolve these restrictions by using a Subdivision Algorithm (SA). Although the selected 

algorithm has its own limitations to produce an image or model but it performs well on Surface Modeling (SM). 

We compare the behavior of limited curves and propose and analyze a subdivision scheme which unifies all 

approximating subdivision schemes in its compact form and produce complex geometrical structures in a short 

computational time with high smoothness. Furthermore, the application of SA is demonstrated through 

different examples. 
Key-words: Surface Modeling (SM); Computer Graphic (CG); Image Processing (IP); Subdivision Algorithm (SA) 

 

1. INTRODUCTION 
Due to the development of computer graphics, 

subdivision schemes are actively studied in 1970, which are 

initially studied by G. de Rham in 1940. The rise of multi-

resolution analysis (MRA) gave birth to significant advances 

in a wide range of domains during the last three decades. 

Wavelet decomposition of signals or images is a very 

important tool for the building efficient algorithms dedicated 

to 3D models represented by discrete polygonal surfaces, 

along with the growth of computing power and the increase 

of network applications make discrete surfaces an attractive 

field of study. Which is actually one of the most obvious and 

vastly used applications of MRA. In the field of computer 

graphics and approximation theory geometric modeling of 

surfaces of arbitrary topology is an important and interesting 

area of research. For the construction of such surfaces 

subdivision algorithms are powerful paradigm. Beginning 

with a input mesh a sequence of meshes is defined new 

vertices are inserted as, preferably, simple local affine 

combinations of neighboring vertices. An attractive feature 

of these schemes is that they are local, i.e., no global sys-tem 

of equations needs to be solved. Although the mathematical 

analysis of the surfaces resulting from subdivision algorithms 

are not always straightforward. 

However, the clarity and simplicity of the schemes and 

associated data structures make them interactive and 

attractive uses where speed is of the essence. In the field of 

Computer Aided Geometric Design (CAGD), the de-facto 

approach for shape modeling is at present Non-Uniform 

Rational B-Splines (NURBS). NURBS representation, 

however, uses a rectangular grid of control points and has in-

adequacy in the construction of shapes of general topology. 

Subdivision is a technique for construction of smooth 

curves/surfaces, which first applied as an extension of splines 

to arbitrary topology control nets. Simplicity and flexibility 

of subdivision algorithms, make them suitable for many 

interactive computer graphics applications. Although 

subdivision was introduced as a generalization of knot 

insertion algorithms for the splines, however it is much more 

general and allows considerable change in the selection of 

subdivision rules. Purity of the subdivision lies in the 

construction of smooth curves/surfaces. However, the uses 

such as special aspects and animation need generation and 

construction of composite geometric shapes, which, like real 

world geometry, carry detail at many scales. Manipulating 

such as refine meshes can be considered difficult task, 

particularly when they are to be animated or edited. 

Interactively, which is burning issue in these cases, is 

challenging to achieve. 

Computer Aided Geometric Design (CAGD) is a 

computational geometry related with algorithms for the 

designing of smooth curves/surfaces and efficient tool for 

mathematical representation. This representation is used for 

the generation of the curves/surfaces, as well as geometrical 

measures of importance such as curvatures. One common 

approach to the design of curves/surfaces which related to 

CAGD is the subdivision schemes. Subdivision schemes 

have be-come important in recent years because they provide 

a precise way to describe smooth curves/surfaces. It is an 

algorithmic technique to generate smooth surfaces as a 

sequence of successively refined polyhedral meshes.  

The beauty lies in the elegant mathematical formulation and 

simple implementation. Computer Aided Geometric Design 

is widely used in providing methods and algorithms for 

mathematical description of shapes. CAGD has its influence 

in the field of geology and medical as it plays an important 

role in geographic information systems and image 

processing respectively. CAGD is the mostly used in 

applied technical fields such as aerospace, automotive 

design, industrial design, Computer Aided Design 

(CAD), Computer Aided Manufacturing (CAM) in 

numerical computing, architecture and mechanical 

engineering. In the emerging era of computer science, 

it helps in animation, simulation of shape behavior, 

graphical representation of large data sheets, 

reconstruction of 3D models form images and also 

fitting surfaces to scanned 3D-prints. Nevertheless, 

CAGD provides main ingredient in Isogeometric 

analysis, which is used in numerical treatment of 

PDE’s. The most commonly used applications of 

CAGD are: Modeling the surface appearing in the 

shapes of airplanes, ships and cars, Controlling and 

planning surgery, Relief maps in cartography and 

drawing machine charts, Constructing images in the 

film industries, television and advertising, 

Automatically creating sectional drawing, Production 

and quality control, Representation products and 

Visualizing of large data sets. 
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In future, there will be many new applications of 

CAGD. Subdivision is the commonly used and most 

attractive field of CAGD for the designing of 

curves/surfaces. Subdivision scheme are used to 

construct smooth curves and surfaces from a given 

set of control points through iterative refinements. 

Due to its clarity and simplicity, subdivision schemes 

have been esteemed in many fields such as image 

processing, computer graphics and computer 

animation. Subdivision schemes are easy to 

implement and suitable for computer applications. In 

general, we can classify subdivision scheme 

according to the following standards: 

i. By the number of edges constructing control grid 

just like triangle grid, quadrangle grid, hexagon grid 

etc. 

ii. By the splitting style of topological grid; for 

example, point split and face split 

iii. By the relationship of limit surface, limit curve and 

control polygon such as approximation subdivision 

and interpolator subdivision.( At each refinement 

level, if new points are inserted into existing control 

polygon and original points remain, the member of 

all the subsequent sequences becoming point of 

limiting curve itself, the scheme is called 

interpolating subdivision scheme. Approximating 

scheme is not required matching the original 

position of the vertices in the original mesh, they 

can and will ad-just this position of vertices as 

needed. In general approximating scheme has 

greater smoothness. Approximating means that 

limit surfaces approximate the initial meshes after 

the subdivision, the newly generated control points 

are not in the limit surfaces. Subdivision surfaces 

are also making fundamental contributions to new 

applications areas in geometric modeling) 

iv. By the continuity and smoothness of limit surface 

for instance C
0
 and up to C

m
 

v. By the characteristic of subdivision in the same 

layer, such as uniform subdivision and non-uniform 

subdivision. 

vi. By the relationship of geometric rule with 

subdivision layer, just like stationary subdivision 

and dynamic subdivision. 

vii. By the number of control points inserted at the level 

k + 1 between two consecutive points such as; 

binary, ternary,...,n-array. 

Modeling the geometry of surface is an important area 

of research in computer graphics. A significant 

standard for the construction of surfaces is sub-

division. We begin with an initial mesh and insert 

new vertices in it. As a consequence, we have a 

sequence of new meshes which is linear 

combination of previous ones. The field of CAGD 

compiles with the visual demonstration. 

Subdivision deals with representation, 

construction, interpolation and approximation of 

curves, surfaces and volumes. CAGD studies 

especially the construction and handling of curves 

and surfaces given by a set of data points. 

Constructing surfaces through subdivision 

elegantly addresses many issues that computer 

graphics practitioners are confronted with: 

Arbitrary Topology: Subdivision algorithm unifies 

and generalizes classical spline patch moves toward 

to arbitrary topology. Means that there is no need for 

trimming the curves/surfaces or awkward constraint 

management between patches. 

Scalability: Due its recursive arrangement, subdivision 

algorithm logically provides level-of-detail rendering 

and adaptive approximation with error bounds. The 

result are algorithms which can make the best of 

limited hardware resources, such as those found on 

low end PCs. 

Uniformity of Representation: Polygonal meshes or 

spline patches are usually used for traditional 

modeling. Subdivision algorithm spans the spectrum 

between these two extremes. Surfaces can behave as 

if they are made of patches, or they can be treated as if 

consisting of many small polygons. 

Numerical Stability: The meshes produced by 

subdivision have many of the nice properties finite 

element solvers require. As a result subdivision 

representations are also highly suitable for many 

numerical simulation tasks which are of importance 

in engineering and computer animation settings. 

Code Simplicity: Last but not least the basic ideas 

behind subdivision are simple to implement and 

execute very efficiently. While some of the deeper 

mathematical analyses can get quite involved this is of 

little concern for the final implementation and 

runtime performance. 

We apply the tensor product to generate the mask of 

proposed schemes and Laurent Polynomial 

Formulism for the analysis of the subdivision 

schemes and result are obtained by using Mat Lab 

software. The rest of the paper is organized as 

follows: Section 2 is about the Literature Review, in Section 

3 we introduce a subdivision algorithm for generating 

the mask of binary subdivision schemes, Section 4 is 

about the application of the algorithm, Results are 

discussed in Section 5and finally the conclusion is 

drawn in Section 6. 

2. Literature Review 

Geometric modelling developed its roots from the Era 

of Euclid and Descartes [1]. The manufacturing of 

curves had started back to Roman times. It started 

with the purpose of shipbuilding such as ship’s rib. 

This technique of shipbuilding was modernized by 

the Venetians from 13
th

 to 16
th

 century. The ship hull 

was constructed by changing the rib’s shapes along 

with the keel (keel is a large beam around which the 

hull of a ship is built). Earlier, there was no definite 

sketch of a ship hull. The spline is a wooden beam 

used to make smooth curves, which lately known as 

Classical Spline. 

In 1944, Liming came out with a book entitled 

Analytical Geometry with Applications to Air Craft. In 

this book, drafting methods were purposed and 

analyzed with computational techniques. These 
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methods help in designing and manufacturing of air 

craft in World War II. In 1950, the influence of 

computational geometry was on the numerical control 

(NC). Early computers were capable of generating 

numerical instructions which drove milling machines 

used for the production of dies and stamps for sheet 

metal. In this regard, computer assisted blue prints of 

dies and stamps were the need of time. In 1959, 

citroën, an auto-mobile company in Paris, hired Paul 

de Casteljau (a mathematician) to create a link 

between 2D blue prints and milling machines. de 

Cateljau initiated with ab initio design of curves. He 

employed Bernstein polynomial for designing curves 

and surfaces. On the other hand, Pierre Bézier in 

1960, also recognized the need of computers for 

representation of mechanical parts at Renault. Bézier 

intro-duced a special parametric curve, based on 

control polygon and used Bernstein polynomial as a 

blending function. Since then Bézier curves led the 

basis of CAGD. Schoenberg coined the term B-spline. 

But in 1960 Carl de Boor started to work with the 

General Motors Lab and use B-spline as a tool to 

make the geometrical presentation. 

The basic ideas behind subdivision are very old 

indeed and initial work on sub-division schemes was 

started in 1940, when G. de Rham used “corner 

cutting” to describe smooth curves. Rham algorithm 

paved the way to initiate work on subdivision 

schemes, but the relevance to the modeling of shape 

started with the proposal of Chaikin [3], who devised 

a method of generating smooth curves for plotting, in 

1974, at the CAGD conference in the university of 

Utah, this was soon analyzed by Forrest [4] and by 

Riesenfeld [5] and linked with the burgeoning theory 

of B-spline curves. It became clear that equal-interval 

B-spline curves of any degree would have such a 

subdivision construction. Both Riesenfeld and Sabin 

argued that Chaikin had invented an iterative method 

to generate a uniform quadratic B-spline curve. The 

extension to surface took just a few years, until 1978, 

when Catmull and Clark [6] published their descrip-

tions of both quadratic and cubic subdivision 

surfaces, the exciting new point being that the surface 

could be described which was not forced to have a 

regular rectangular grid in the way that the tensor 

product B-spline surfaces were, the definition of a 

specific surface in terms of control mesh could follow 

the needs of the boundaries and the curvature of the 

surface. This was made possible by the extension of 

the subdivision rules to allow for "extraordinary 

points", being either "extraordinary vertices", where 

either other than four faces came together at a vertex, 

or else" extraordinary faces", where a face had other 

than four sides.  

At about the same time Doo [7] and Sabin, who had 

also been working on quadratic subdivision, showed a 

way of analyzing the behavior of these schemes at the 

extraordinary points, treating the refinement process 

in terms of matrix multiplication, and using Eigen 

analysis of the spectrum of this matrix [8]. This aspect 

was followed up by Ball and Storry [9, 10] who made 

this analysis process more formal and succeeded in 

making some improvements to the coefficients used 

around the extraordinary points in the Catmull-Clark 

scheme. Storry identified that in the limit, the 

configuration around and extraordinary point was 

always an affine transform (dependent on the 

original polyhedron) of a point distribution which 

was completely defined by the eigenvectors of the 

subdivision matrix. He called this the natural 

configuration. 

Boor discovered the generalization of Chaikin 

algorithm [11]. After that Dubuc [12] brought 4-point 

C
1
 interpolating subdivision scheme. Before that, the 

schemes were approximating quadratic B-spline 

having the same weigh-tage. Dyn et al. [13] worked 

simultaneously and independently having no breaks 

and introduced 4-point C
1
 interpolatory subdivision 

scheme with one shape parameter. For fix value of 

parameter it became Dubuc’s 4-point scheme. Dyn et 

al. [14] proved 4-point subdivision scheme and found 

the continuity of the scheme through Eigen analysis. 

Further it is preceded by Tang et al. [15]. They also 

introduced 4-point interpolatroy subdivision scheme 

and found the continuity by using Laurent 

polynomial. Hassan et al. [16] followed the same idea 

but with difference of arity and they proved that 

scheme gives continuity. 

An interpolatory subdivision curve with local shape 

control parameter was p-resented by Beccari et al. 

[17]. The scheme reproduces conic section, arcs of 

arbitrary length and creates variety of shape effects 

and mixes them in the un-restricted form. Cai [18] 

introduced 4-point interpolatory subdivision scheme 

and discussed the convergence of scheme in non-

uniform control point and the error estimation. 

Hormann and Sabin [19] introduced the family of 

subdivision scheme with cubic precision and 

determine how the support, the Hölder regularity, the 

precision set, the degree of polynomials spanned by 

the limit curves, and the artifact behavior vary with 

the integer parameter that identifies the members of 

the family. Dyn et al [20] presented necessary and 

sufficient conditions for a linear, binary, uniform, and 

stationary subdivision scheme to have polynomial 

reproduction of degreed. Their conditions were partly 

algebraic and easy to check by considering the symbol 

of a subdivision scheme, but also relate to the 

parameterizations of the scheme. After discussing 

some special properties that hold for symmetric 

schemes, they used conditions to de-rive the 

maximum degree of polynomial reproduction for two 

families of symmetric schemes, the family of pseudo-

splines and a new family of dual pseudo splines. 

Mustafa et al [21] proposed the m-point 

approximating subdivision scheme with one 

parameter and analyzed for m > 1. Their scheme is a 

generalized form of existing subdivision schemes. The 

smoothness of their scheme was checked by Laurent 

polynomial.  
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Mustafa and Najma [22] introduced General formula 

for the mask of (2b + 4)-point n-array subdivision 

schemes. Their formulas corresponding to the mask 

not only generalized well known existing schemes 

but as well as provide the mask of high rarity 

schemes. Some families of odd-point interpolating 

subdivision schemes [23] have been presented in the 

literature but the study of families of odd-point 

approximating subdivision scheme for curve 

smoothing of noisy random data is still an open 

research area. In this year some fabulous work has 

been done by Mustafa et al. [22, 24] in the field of 

subdivision schemes. In coming sections, we present 

the tensor product of Hassan [16] subdivision 

scheme, subdivision algorithm for surface modeling 

and the applications of these algorithms. 

3. Subdivision Algorithm 

The developments of recent years have convinced us 

of the importance of understanding the mathematical 

foundations of subdivision algorithm. A Computer 

Graphics professional who wishes to use subdivision 

algorithm, probably is not interested in the subtle 

points of a theoretical argument. However, under-

standing the general concepts that are used to 

construct and analyze subdivision schemes allows 

one to choose the most appropriate subdivision 

algorithm or customize one for a specific application. 

Subdivision surfaces are polygon mesh surfaces 

generated from a given mesh through a refinement 

process makes the mesh smooth while increasing its 

density. Complex smooth surfaces can be derived in a 

reasonably predictable way from relatively simple 

meshes. These are: stationary or non-stationary, 

binary or ternary, type of mesh (triangle or 

quadrilateral), approximating or interpolating and 

linear or non-linear. The other are: Vertex insertion 

(primal): Insert a vertex on the interior of each edge 

and one on the interior of each face. Loop, Kobbelt, 

Catmull-Clark, Modified which are called as 

Subdivision Zoo. 

Insert a face in the middle of each old face and 

connect faces in adjacent old faces. Interpolating- 

Control the limit surface in a more intuitive manner. 

Simplify algorithms. Approximating- Higher quality 

surfaces. Faster convergence. We briefly describe 

some considerations that are useful when choosing 

appropriate data structures for implementing 

subdivision surfaces. We restrict ourselves to binary 

case. The simplest way to extend univariate scheme 

to bivariate scheme is tensor-product scheme. Laurent 

polynomial of tensor product scheme can be obtained 

by the rule given in eq. (1). 

  (1) 

Where a(z1) and a(z2) are the Laurent polynomials of 

univariate schemes. 

A general compact form of binary subdivision scheme 

S which maps a polygon q
k
 = {qi,j}i,j∈Z to a refined 

polygon q
k+1

 = {qi,j }i,j∈Z is defined in eq. (2) 

  (2) 

Where s = 1 for curve and s = 2 for surface. 

In case of bivariate subdivision scheme there are four 

rules depending on the parity of each component in 

the multi-index i = (i1, i2). Writing all the multi-

indices by components, we have four rules given in 

eq. (3). 

   (3) 

3.1 Construction of Subdivision Algorithm 

Proposed algorithm comes from the regular tensor 

product of [16].  

Problem: Sub- division for tensor product 3-point 

subdivision surface has rigid restrictions on the 

topology. Each vertex must have order 4. This 

restriction makes the design of many surfaces 

difficult. Our presented an algorithm that eliminated 

this restriction by generalizing the 3-point 

subdivision surface subdivision rules to include 

arbitrary topology. And the behavior of the limit 

surface defined by a recursive division construction 

can be analyzed in terms Laurent polynomial. For this 

we consider 3-point binary univariate subdivision 

scheme of [16]. 

  (4) 

and its Laurent polynomial is given as 

  (5) 

 (6) 

k 
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 (7) 

Geometric view of proposed subdivision algorithm: 

the new points are centroid of the sub-face formed by 

the face centroid, a corner vertex and the two mid-

edge points next to the corner. The new points then 

are connected. There will be two vertices along each 

side of each edge in the old mesh, by construction. 

These pairs are connected, forming quadrilaterals 

across the old edges. The new mesh, therefore, will 

create quadrilaterals for each edge in the old mesh, 

will create a smaller n-sided polygon for each n-sided 

polygon in the old mesh, and will create an n-sided 

polygon for each n-valence vertex (valence being the 

number of edges that share the vertex). After one 

application of the scheme all vertices will have a 

valence of four, so subsequent applications will 

create quadrilaterals for the vertices. (The original n-

sided polygons are retained, however, and shrink to 

extraordinary points where the mesh is not as smooth, 

as the scheme is repeatedly applied.) 

4. Application of Algorithm on Subdivision Surfaces 

Subdivision surfaces are polygon mesh surfaces 

constructed from a base mesh through an iterative 

process that smooth the mesh while increasing its 

density. Complex smooth surfaces can be achieved in 

a logically provable way from comparatively simple 

meshes. An example, comparing the proposed 

algorithm, shows how the basic process can work. 

The base mesh consists of a mere 36 polygons (16 

vertices, 16 faces and 32 edges) in Fig. 1. Each 

polygon was designed by hand separately, then all 

were merged into one figure. 

After one iteration of the prosed algorithm, the mesh 

has become 144 polygons (64 vertices, 64 faces and 

128 edges) in Fig. 2. The sharpest points have been 

nicely rounded off. The lengths of the corners have 

become shorter and smoother, but the tips have 

become slightly pointed. 

 
Fig. 1: Step 0 Initial Polygon 

 
Fig. 2: Step 1 Subdivision Level 

 
Fig. 3: Step 2 Subdivision Level 

After one more iteration of the prosed algorithm, the 

mesh has become 576 polygons (256 vertices, 256 

faces and 512 edges) in Fig. 3. The surface is already 

noticeably smooth. The lengths of the corners have 

become shorter and smoother. 

After one more iteration of the prosed algorithm, the 

mesh has become 2304 polygons (1024 vertices, 1024 

faces and 2048 edges) in Fig. 4. The sharpest points 

have been nicely rounded off. 

 

 
Fig. 4: Step 3 Subdivision Level 
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5. RESULTS AND DISCUSSION 
New polygons are built from the old mesh in the 

following way. An edge point is formed from the in 

the ratio of [1: 10: 5]/16 of each edge. A face point is 

formed as the centroid of each polygon of the mesh. 

Finally, each vertex in the new mesh is formed as the 

average of a vertex in the old mesh, a face point for a 

polygon that touches that old vertex, and the edge 

points for the two edges that belong to that polygon 

and touch that old vertex. As an example, a square in 

the old mesh will create a new, smaller square 

centered in the old square. 

The new points then are connected. There will be two 

vertices along each side of each edge in the old mesh, 

by construction. These pairs are connected, forming 

quadrilaterals across the old edges. Within each old 

polygon, there will be as many new vertices as there 

were vertices in the polygon. These are connected to 

form a new, smaller, inset polygon. And finally, 

around each old vertex there is a new vertex in the 

adjoining corner of each old polygon. These are 

connected to form a new polygon with as many edges 

as there were polygons around the old vertex. The 

new mesh, therefore, will create quadrilaterals for 

each edge in the old mesh, will create a smaller n-

sided polygon for each n-sided polygon in the old 

mesh, and will create an n-sided polygon for each n-

valence vertex (Va-lence being the number of edges 

that touch the vertex). After one application of the 

scheme all vertices will have a valence of four, so 

subsequent applications will create quadrilaterals for 

the vertices. (The original n-sided polygons are 

retained, however, and shrink to extraordinary points 

where the mesh is not as smooth, as the scheme is 

repeatedly applied.) 

Observe in the images below that each face of the 

cube has been divided in-to four quadrilaterals. The 

vertex points, the corners of the cube, have been 

"pressed inward". The edge points are clearly derived 

from the midpoints of the original edges, but are 

"pressed in" as well. We present the Visual 

performance of 3-point tensor product binary scheme in 

Figs. 5 and 6. 

 
 

Fig. 5. Initial Polygon after Step 0 and Step 

1respectively 

 

 
Fig. 6. Subdivision Surfaces after Step 2 and Step 

3respectively 

6. CONCLUSION 

The performance of our 3-point tensor product binary 

approximating scheme is shown. The refinement 

algorithm of 3-point tensor product scheme involves 

computing a new vertex corresponding to each 

(vertex, face) pair of the original mesh. The new 

vertices are found as weighted averages of the points 

belonging to each face of the original mesh. For the 3-

point tensor product case, these weights (going 

around a face) are: 

 
The newly created vertices are then connected to form 

the faces of the refined control mesh. We conclude 

that the algorithm has the interesting features, first, 

Simplicity, algorithm iteratively updates the input 

mesh in a global manner based on a simple point-

surface distance computation followed by 

translations of control vertices along the displacement 

vectors, second, Speed, algorithm runs at least six 

times faster than current state-of-the-art subdivision 

fitting methods, third, Scalability, for Subdivision 

Surface Approximation, we can progressively obtain a 

finer fit by performing more iterations and finally, 

Generality, since the algorithm is based on simple 

geometric procedures, it can be easily extended to 

curves and surfaces defined by control vertices. The 

Subdivision Algorithm for Surface Modeling will 

remain an avenue for further research. 
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