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ABSTRACT—Chaos theory has wide applications in several branches of science and engineering. The discovery of novel 

chaotic systems in various applications, their qualitative properties and the control of such systems are active research areas. 

This paper announces a novel chaotic system obtained by modifying the equations of the Rucklidge chaotic system (1992) for 

nonlinear double convection. The Lyapunov exponents of the modified Rucklidge chaotic system are obtained as 
1 0.4283,L   

2 0L   and 
3 3.4301.L    Also, the Lyapunov dimension of the modified Rucklidge chaotic system is derived as 2.1249.LD   

Next, an adaptive feedback controller is defined for the lag synchronization of the identical modified Rucklidge chaotic systems 

with unknown parameters. Finally, a circuit design of the modified Rucklidge chaotic system and its adaptive lag 

synchronization are implemented in LabVIEW to validate the results for the theoretical chaotic model. 
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I.  INTRODUCTION  
A chaotic system is usually characterized by having a dense 

collection of points with periodic orbits, being sensitive to 

initial conditions of the system (“butterfly effect”) and also 

being topologically transitive. A chaotic system is also 

characterized by the existence of a positive Lyapunov 

exponent. 

The first chaotic system was derived by Lorenz [1], when he 

was studying convection patterns in the weather model. 

Numerous 3-D chaotic systems have been found in recent 

decades such as Rössler system [2], ACT system [3], 

Rucklidge system [4], Chen system [5], Lü system [6], Chen-

Lee system [7], Wang system [8], Zhang-Tang system [9], 

Sundarapandian-Pehlivan system [10], Pehlivan system [11], 

Vaidyanathan systems [12-28], Thanh system [29-30], etc.     

Chaos modelling have applications in many areas such as 

chemical reactors [31-40], Brusselators [41-43], Dynamo 

systems [44-48], Tokamak systems [49-50], biology models 

[51-60],  neurology [61-70], ecology models [71-77], 

memristive devices [78-80], economics [81-82], etc. 

Recently, many methods have been developed in the control 

literature for synchronizing a pair of chaotic systems such as 

active control [83-100], adaptive control [101-120], 

backstepping control [121-130], sliding control [131-140], 

etc.  

Due to the presence of signal propagation delays, we cannot 

always assume that the states in the response system should 

synchronize with the driving signals at exactly the same time. 

Thus, in designing a controller for synchronizing chaotic 

systems, the propagation delays should be taken into 

consideration. In such a case, the response state ( )y t  is 

expected to synchronize with the driving signal with certain 

transmission lag .  In other words, the synchronization goal 

aims to drive the lag synchronization error 

( ) ( ) ( )e t y t x t     to zero asymptotically as .t    

Lag synchronization is investigated with many approaches 

such as intermittent control [141], adaptive control [142], 

sliding mode control [143], fuzzy logic control [144], etc. 

In fluid mechanics modelling, cases of two-dimensional 

convection in a horizontal layer of Boussinesq fluid with 

lateral constraints were studied by Rucklidge [4]. When the 

convection takes place in a fluid layer rotating uniformly 

about a vertical axis and in the limit of tall thin rolls, 

convection in an imposed vertical magnetic field and 

convection in a rotating fluid layer are both modeled by the 

Rucklidge system of ordinary differential equations, which 

produces chaotic solutions like the Lorenz system [1]. 

In this research work, we derive a novel chaotic system by 

modifying the equations of the Rucklidge chaotic system [4]. 

We discuss the qualitative properties of the modified 

Rucklidge chaotic system such as dissipativity, stability of the 

equilibrium points, Lyapunov exponents and Lyapunov 

dimension. Next, we derive new results for the lag 

synchronization of the identical modified Rucklidge chaotic 

systems via adaptive control method. Finally, we present 

details of the circuit simulation and LabVIEW 

implementation of the modified Rucklidge chaotic system and 

adaptive lag synchronization of the modified Rucklidge 

chaotic systems. 

II. A MODIFIED RUCKLIDGE CHAOTIC SYSTEM 

The Rucklidge chaotic system [4] for nonlinear double 

convection is described by  

   

1 1 2 2 3

2 1

2

3 3 2

x ax bx x x

x x

x x x

   



  

       (1) 

where  1 2 3, ,x x x are the states and ,a b are constant, positive, 

parameters. 

The Rucklidge system (1) is chaotic when the parameter 

values are taken as 

  2,   6.7a b          (2) 

The Lyapunov exponents of the Rucklidge system (1) are 

obtained numerically as 

  1 2 30.1877,   0,   3.1893L L L         (3)  

Also, the Lyapunov dimension of the Rucklidge chaotic 

system (1) is derived as 



1002 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),28(2),1001-1011,2016 

March-April 

  1 2

3

2 2.0589L

L L
D

L


         (4) 

In this research work, we derive a novel chaotic system by 

modifying the equations of the Rucklidge chaotic system (1) 

and we obtain the novel system 

  

1 1 2 2 3

2 1

4

3 3 2

x ax bx x x

x x

x x x

   



  

       (5) 

In this work, we show that the modified Rucklidge system (5) 

is chaotic when the parameter values are taken as 

 2,   10a b          (6) 

For numerical simulations, we take the initial conditions of 

the modified Rucklidge system (5) as 

 
1 2 3(0) 1.2,   (0) 0.8,   (0) 1.4x x x        (7) 

The basic qualitative properties of the modified Rucklidge 

chaotic system (5) are described in Section III. 

The Lyapunov exponents of the modified Rucklidge chaotic 

system (5) are obtained as 

  
1 2 30.4283,   0,   3.4301L L L         (8) 

Also, the Lyapunov dimension of the modified Rucklidge 

chaotic system (5) is derived as 

 1 2

3

2 2.1249L

L L
D

L


         (9) 

It is noted that the Maximal Lyapunov Exponent (MLE) of 

the modified Rucklidge chaotic system (5) is greater than that 

of the Rucklidge chaotic system (1). It is also noted that the 

Lyapunov dimension of the modified Rucklidge chaotic 

system (5) is greater than that of the Rucklidge chaotic system 

(1). This shows that the modified Rucklidge chaotic system 

(5) has more chaotic behavior than the Rucklidge chaotic 

system (1). 

Fig. 1 shows the strange chaotic attractor of the modified 

Rucklidge chaotic system (5). 

 

Fig. 1 Strange attractor of the modified Rucklidge chaotic 
system 

The modified Rucklidge chaotic system with delay is given 

by the 3-D dynamics 

1 1 2 2 3

2 1

4

3 3 2

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

x t ax t bx t x t x t

x t x t

x t x t x t

    

 

  

        

  

     

  (10) 

where 0  is the time-delay and ,a b are constant, positive 

parameters. 

III. ANALYSIS OF THE MODIFIED RUCKLIDGE 

CHAOTIC SYSTEM 

A. Dissipativity 

In vector notation, the modified Rucklidge system (5) can 

be expressed as    

   

1

2

3

( )

( ) ( ) .

( )

f x

x f x f x

f x

 
 

 
 
  

        (11) 

The divergence on the vector field f on 
3R is given by 

 31 2

1 2 3

( )( ) ( )
.

f xf x f x
f

x x x

 
    

  
      (12) 

Let   be any region in 
3R with a smooth boundary. Let 

( ) ( ),tt   where 
t is the flow of .f  Let ( )V t denote 

the volume of ( ).t  

By Liouville’s theorem, we have 

 1 2 3

( )

( ) ( )
t

V t f dx dx dx


         (13) 

The divergence of the flow of the system (5) is found as 

 31 2

1 2 3

( 1)
ff f

f a
x x x


 

        
  

      (14) 

where 1 3 0.a      

       

Substituting the value of f  in (13), we get 

  1 2 3

( )

( ) ( ) ( )
t

V t dx dx dx V t 


         (15) 

Integrating the linear differential equation (15), we get 

 ( ) exp( ) (0)V t t V         (16) 

Since 0,  it follows from Eq. (16) that ( ) 0V t   

exponentially as .t   Thus, the modified Rucklidge 

system (5) is dissipative. Thus, the system limit sets are 

ultimately confined into a specific limit set of zero volume, 

and the asymptotic motion of the system (5) settles onto a 

strange attractor of the system. 

B. Symmetry 

The system (5) is invariant under the coordinates 

transformation 

  1 2 3 1 2 3( , , ) ( , , )x x x x x x         (17) 

The transformation (17) persists for all values of the system 

parameters. Thus, the system (5) has rotation symmetry about 
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the 
3x  axis and any non-trivial trajectory of the system (5) 

must have a twin trajectory.    

C. Invariance 

It is easy to see that the 
3x  axis is invariant for the flow of 

the system (5). Also, the invariant motion of the flow of the 

system on the 
3x  axis is governed by the scalar differential 

equation 

  
3 3x x           (18) 

which is globally exponentially stable. 

D. Lyapunov Exponents and Lyapunov Dimension 

We take the parameter values of the modified Rucklidge 

system (5) as in the chaotic case, i.e. 

   2,   10a b          (19) 

We take the initial state as 

  
1 2 3(0) 1.2,    (0) 0.8,    (0) 1.4x x x        (20) 

The Lyapunov exponents of the modified Rucklidge   system 

(5) are numerically obtained using MATLAB as 

  
1 2 30.4283,   0,   3.4307L L L         (21) 

Eq. (29) shows that the modified Rucklidge system (5) is a 

chaotic system since it has a positive Lyapunov exponent, 
1.L  

Since 
1 2 3 3.0018 0,L L L     it is immediate that the 

modified Rucklidge chaotic system (5) is dissipative. 

The Lyapunov dimension of the modified Rucklidge chaotic 

system (5) is determined as 

  1 2

3

2 2.1249,L

L L
D

L


         (22) 

which is fractional.  

IV. ADAPTIVE LAG SYNCHRONIZATION OF MODIFIED 

RUCKLIDGE CHAOTIC SYSTEMS 

For the master system defined by the modified Rucklidge 

chaotic system (10) with unknown parameters a and ,b the 

slave system can be described as 

  

1 1 2 2 3 1

2 1 2

4

3 3 2 3

y ay by y y u

y y u

y y y u

    

 

   

      (23) 

where 1 2 3, ,u u u are nonlinear controllers to be designed using 

estimates ˆˆ( ), ( )a t b t of the unknown system parameters so that 

the systems (10) and (23) can be synchronized.   

The lag synchronization error is defined as 

  

1 1 1

2 2 2

3 3 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

e t y t x t

e t y t x t

e t y t x t







  

  

  

       (24) 

where 0  is a constant representing time delay or lag. 

Then the lag synchronization error dynamics can be easily 

obtained as 

   

1 1 2 2 3

2 3 1

2 1 2

4 4

3 3 2 2 3

( ) ( )

       ( ) ( )

( ) ( )

e ae be y t y t

x t x t u

e e u

e e y t x t u

 



   

   

 

     

       (25) 

We consider an adaptive feedback controller defined by 

   

1 1 2 2 3

2 3 1 1

2 1 2 2

4 4

3 3 2 2 3 3

ˆˆ( ) ( ) ( ) ( )

       ( ) ( )

( ) ( )

u a t e b t e y t y t

x t x t k e

u e k e

u e y t x t k e

 



  

   

  

    

      (26) 

where ˆˆ( ), ( )a t b t are estimates of the unknown parameters 

, ,a b  respectively, and 
1 2 3, ,k k k are positive gain constants. 

Substituting (26) into (25), we obtain the closed-loop error 

dynamics as 

   

1 1 2 1 1

2 2 2

3 3 3

ˆˆ[ ( )] [ ( )] ( )

( )

( )

e a a t e b b t e k e t

e k e t

e k e t

     

 

 

     (27) 

We define the parameter estimation errors as 

  
ˆ( ) ( )

ˆ( ) ( )

a

b

e t a a t

e t b b t

 

 
       (28) 

Substituting (28) into (27), we get the error dynamics as 

   

1 1 2 1 1

2 2 2

3 3 3

( )

( )

( )

a be e e e e k e t

e k e t

e k e t

   

 

 

    (29) 

Differentiating (28), we obtain 

  
ˆ( )

ˆ( )

a

b

e a t

e b t

 

 
         (30) 

Next, we consider the Lyapunov function defined by 

    2 2 2 2 2

1 2 3

1
,

2
a bV e e e e e           (31) 

which is positive definite on 
5.R  

Differentiating V along the trajectories of (29) and (30), 

we obtain 

   

2 2 2 2

1 1 2 2 3 3 1

1 2

ˆ

ˆ      

a

b

V k e k e k e e e a

e e e b

       
 

  
  

     (32) 

In view of (32), we take the parameter update law as 

  

2

1

1 2

ˆ

ˆ

a e

b e e

 


        (33) 

Next, we state the main result of this section. 
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Theorem 1. The time-delayed modified Rucklidge chaotic 

system (10) and the modified Rucklidge chaotic system (23) 

with unknown system parameters are globally and 

exponentially synchronized by the adaptive feedback control 

law (26) and the parameter update law (33), where 

1 2 3, ,k k k are positive gain constants. 

Proof. Substituting (33) into (32), we obtain the time-

derivative of the quadratic Lyapunov function V as 

   
2 2 2

1 1 2 2 3 3V k e k e k e           (34) 

which is a negative semi-definite function on 
5.R  

Thus, using Barbalat’s lemma [145], we conclude that 

( ) 0e t   as t  for all initial conditions 
3(0) .e R  

This completes the proof.  

 

 
 

Fig. 2 LabVIEW implementation of the time-delayed modified 
Rucklidge chaotic system 

 

Fig. 3 1 2( , )x x –phase portrait of the time-delayed modified Rucklidge 

chaotic system 

 

Fig. 4 2 3( , )x x –phase portrait of the time-delayed modified 

Rucklidge chaotic system 
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Fig. 5  
3 1( , )x x -phase portrait of the time-delayed modified 

Rucklidge chaotic system 

V. LABVIEW IMPLEMENTATION OF THE MODIFIED 

RUCKLIDGE CHAOTIC SYSTEM 

Fig. 2 shows the implementation of the modified Rucklidge 

chaotic system (10) in LabVIEW using the Control Design 

and Simulation Loop. 

For numerical simulations, we take  

  0.1,  2,a  10b         (35) 

and initial state as  

  1(0) 1.2,x  2 (0) 0.8,x   3(0) 1.4.x       (36) 

Figures 3-5 show the 2-D phase portraits of the modified 

Rucklidge chaotic system (10). 

VI. LABVIEW IMPLEMENTATION OF THEADAPTIVE LAG 

SYNCHRONIZATION OF THE MODIFIED RUCKLIDGE SYSTEMS 

In this section, the adaptive control method for the lag 

synchronization of the modified Rucklidge chaotic systems 

discussed in Section III is implemented using LabVIEW. 

 

Fig. 6 shows the design of slave subsystem (23) using 

LabVIEW. Fig. 7 shows the design in LabVIEW for the 

adaptive controller u defined by Eq. (26). 

For numerical simulations, the initial values of the master 

system (10) are taken as 

1 2 3(0) 1.4,   (0) 1.2,   (0) 0.8x x x         (37) 

The initial values of the slave system (23) are taken as 

1 2 3(0) 0.4,   (0) 1.7,   (0) 0.5y y y         (38) 

The initial values of the parameter estimates are taken as 

ˆˆ(0) 0.8,   (0) 6.3a b        (39) 

The time-delay is taken as 0.1.   

Fig. 8 shows the time history of the lag synchronization 

errors. 

 

 Fig. 6 LabVIEW implementation of the slave system    

 

 Fig. 7 LabVIEW implementation of the adaptive controller for 
lag synchronization    

 

Fig. 8 Time-history of the lag synchronization errors 
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VII. CONCLUSIONS 
In this paper, we have discovered a novel chaotic system, 

which has been obtained by modifying the equations of the 

Rucklidge chaotic system (1992) for nonlinear double 

convection. The qualitative properties of the modified 

Rucklidge chaotic system have been derived. It is also noted 

that the modified Rucklidge chaotic system is dissipative. 

This research work also derived new results for the adaptive 

lag synchronization of identical modified Rucklidge chaotic 

systems. To validate the results for the theoretical model, we 

presented LabVIEW implementation of the modified 

Rucklidge chaotic system with delay and adaptive controller 

design for the lag synchronization of the modified Rucklidge 

chaotic systems.   
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