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ABSTRACT: In this paper, we have investigated the stability of the Lagrangian solutions in the photogravitational circular 

restricted four-body problem with the effect of Coriolis and centrifugal forces, and variable mass. All the three primaries 

having masses
1m , 

2m and 
3m  form an equilateral triangle, with

2 3m m are source of radiation pressures. The 

infinitesimal body has a mass m which varies with time as per Jeans’ Law. The values of the 

parameters 1/ 2, 0, 1q k n   , used by Meshcherskii in the space-time transformations are used. The equations of motion 

of the infinitesimal body in this current problem differ from the equations of motion of Singh obtained recently in 2015 by the 

factor of variation of mass parameter  . The existence of libration points along with their co-linearity character have been 

examined for a fixed value of parameters  ,
 1 (the proportionality constant in Jeans’ law, 

10 0.2  ), 0.019  (the 

mass parameter), centrifugal force    and pi (radiation factors, 0≤pi<<1, i= 1 to 3). It is observed that libration points are 

depending only on the centrifugal force but the stability depend on both the Coriolis and centrifugal forces. We have also 

examined the stability of these libration points. We found at most eight libration points in which three are asymptotically 

stable and the other five are unstable. 
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1. INTRODUCTION 
Now a day the investigation of the stability of the libration 

points in the restricted three-body problem with variable 

mass is one of the most important problems in celestial 

mechanics. This problem is significant in various fields, 

particularly to the field of astrodynamics, astronomy and 

astrophysics. The combined effect of gravitational 

interaction, perturbation like Coriolis force and centrifugal 

force and radiation pressure on celestial bodies is an 

important field of study. Many researchers studied on 

photogravitational restricted three-body problem like 

Radzievskii [1,2], Simmons et al. [3], Kumar and 

Choudhary [4], Singh et al. [5-8], Mittal et al. [9], 

Papadauris e. al. [10] and Zhang et al. [11] enables to extend 

the work for the restricted n-body problem. 

Bhatnagar et al. [12], Singh et al. [5, 6, 7, 8], Kalvouridis et 

al. [13], Hallan et al. [14,15], Raheem et al. [16], 

Baltagiannis et al. [17], Abouelmagd et al. [18] etc. have 

studied in the restricted four body problem with 

perturbations. The restricted four-body problem has helped 

in determining the families of simple periodic orbits, nature 

of the stability around the hyperbolic Lyapunov periodic 

orbits, stability of the libration points etc. However, the 

work on the photogravitational circular restricted four-body 

problem with perturbations and variable mass on such 

system has been taken as a fresh approach to the invention 

of n-body problem. 

This paper contains various sections considering 

introduction as first section. In the second section, we have 

determined the equations of motion and Jacobi integral of 

the infinitesimal variable mass. In the third section, we have 

investigated the existence of the libration points for the 

various fixed parameters. In the fourth section, we have 

drawn the zero velocity curves. In the fifth section, we have 

shown the stability of the libration points with the help of 

the space-time inverse transformations of Meshcherskii 

[19]. And finally in the sixth section, we have concluded the 

problem. 

2. EQUATIONS OF MOTION 

Let there be three masses 
1 2 3,  and  m m m (

1 2 3m m m  ). 

The bodies of masses 
1 2 3,  and m m m  are at the vertices of 

an equilateral triangle of length l. They revolve in circular 

orbits with the angular velocity ' '  without rotation about 

their Centre of mass. The angular velocity,  satisfies the 

equation 
2 2

1 2 3( )l G m m m    .                      Mccuskey [20] 

The line joining the primary 1m and the mid-point of the 

line joining the primaries 
2 3 and  m m  has been chosen as X-

axis. The Centre of mass of the three primaries has been 

taken as origin and the line perpendicular to X-axis through 

origin in the plane of motion of the primaries, is taken as Y-

axis. The line through origin and perpendicular to the plane 

of motion of the primaries is taken as Z-axis. Let us consider 

a synodic system of coordinates xyz; initially coincident 

with the inertial system XYZ, rotating with angular velocity 

  about z-axis (the z-axis is coincident with Z-axis). 

We, now assume that 2

1 2 3

m

m m m


 
 

and choose units 

of mass, length and time such that 
1 2 3 1m m m   , 

1l  and G = 1 respectively. Thus, angular velocity  =1, 
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masses
2 3m m    and 

1 1 2m   . The co-ordinates of 

the vertices of the equilateral triangle where the masses  

1 2 3,  and  m m m  are placed, in dimensionless variables are  

Table 1 Equilibrium points on plane   when μ =0.019, 

γ=0.4, α1=0.2, p1=0.001, p2=-0.002, p3=0.003
 

 

 3 ,0,0 ,   3 1 2 / 2, 1/ 2,0   and   3 1 2 / 2,1/ 2,0   

respectively in the synodic axes xyz. 

Following the procedure of Abouelmagd [18], we can write 

the equations of motion of the infinitesimal variable mass 

 , ,m x y z  in the photogravitational circular restricted four-

body problem with the effect of perturbations in the synodic 

coordinate system when the variation of the mass is non-

isotropic and originates from one point are given by 

   2 xm x y m x y U     ,  

    2 ym y x m y x U     , 

 ,zmz mz U              (1) 

where

(x, y) = the synodic rectangular coordinates of the 

infinitesimal mass, 

 

      1 2 3

1 2 3

2 2

1 2 1 1 1
,

2

p p p
m

r r r

m
U x y

  



    
  

 

 



 
2

2 2 2

1 3 ,x y zr      

 

2 2

2 2

2

3 1
1- 2 ,

2 2
x y zr 

   
           

 

 

2 2

2 2

3

3 1
1 2  ,

2 2
x y zr 

   
            

 

2

1 2 3

,
m

m m m
 

 
 we have assumed that 

1 2 3m m m  . 

The total forces on m due to im   

 1 1 ,( 1 3) towards primaries,i

i

p

i p i i i

i

F
F F F F p i to

F

 
       

 

where 
iF = gravitational force exerted on m due to 

im , 

ipF = solar radiation pressure on m due to 
im
 

1 , 1,    1 ', ' 1.   
 

where , ` are small perturbations given to the Coriolis 

and the centrifugal forces respectively 
By Jeans' Law [21] 

1

ndm
m

dt
  ,                     

(2) 

where 
1  is the constant coefficient and the value of 

exponent n is within the limit 0.4 4.4n   for the star of 

the main sequence. For a rocket 1n   and the mass of the 

rocket which varies exponentially is given by the 

expression 1

0 ,
t

m m e


  
0 at 0m m t  . 

To simplify the equations of motion, we use the space-

time transformations 
q x  ,

q y  ,
q z  ,

kd dt  , 

-

1 1

qr   , 
-

2 2

qr   , 
-

3 3

qr   ,        (3) 

where

0

 .
m

m
               (4) 

Now, taking 1/ 2, 0, 1q k n   ,  using (2), (3) and (4), 

the equations of motion (1) become 

2 W   , 

2 W   , 

W  ,                     (5) 

where 

 

      

2 2
2 2 21 1

1 2 33/2

1 2 3

1

2 4 8

1 2 1 1 1

W

p p p

 
   

  


  

 
    

 

    
   

 

, 

 
2

2 1/2 2 2

1 3         ,      

 

2 2

2 1/2 1/2 2

2

3 1
1 2  

2 2
     
   

            

, 

 

2 2

2 1/2 1/2 2

3

3 1
1 2  

2 2
     
   

            

. 

From equations (5), we can write that 

  Location of non-collinear libration points  0 0, 
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2 2 2 2 ,W C      where C is the Jacobi integral constant. 

3. LIBRATION POINTS 

The libration points with variable mass m are obtained from 

solution of the equations: 

0, 0, 0W W W    
      

i.e.

 

    

   

   

1/2

1

3

12
3/21

1/2

2

3

2

1/2

3

3

3

1 2  1 3 

34   1   1 2
2

3
  1 1 2

2
                 0,

p

p

p

  




  
   



   



   



      
     

 


 
    

 
 





      

Table 2 Equilibrium points on plane  When μ =0.019, γ=0.4, 

α1=0.2, p1=0.001, p2=-0.002, p3=0.003 

  Location of non-collinear libration points  0 0,   

1 

(-0.633233, -0.379243), ( ), 
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1.4 
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( ), ( ) 
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  

 

 

1

3

1

1/2

2 2
3/21

3

2

1/2

3

3

3

1 2 1

1
  1

2
0,

4

1
 1

2

p

p

p

 


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

  


  



  
 

 
  

             
 

       
 

 

  

 

 

1

3

1

2
23/21

3

2

3

3

3

1 2 1

  1
0

4

  1

p

p

p

 



 
 



 



  
 
 
 
   
 
 


  
 

.  (6)                                                                                                      

If we take 1 0   or 1   and 

 0, 1to3ip i  in equations (6), we obtain the 

equations of Singh et al. [8].  

For 1 0and 0( 1 3)ip i to    , we have determined 

the positions of libration points numerically for different  

values of
1,   and ip   in the plane of motion of the 

primaries i.e. in plane  (Tables 1 to 7). Besides, we 

have determined the locations of the libration points in the 

out-of-plane (Table 7).  

Table 3 Equilibrium points on plane   when 

1 1 2 30.9, 0.2, 0.01, 0.02, 0.03.p p p     
 

  Location of non-collinear libration points  0 0,   

1 

( ),( ), 

( , ), ( ), 

( ), ), 

( ), ( ) 

1.2 

( ),( ), 

( ), ( ), 

( ),( ), 

( ), ( ) 

1.3 

( ),( ),  

( ), ( ), 

( ),( ), 

( ), ( ) 

1.4 

( ),( ),  

 ( ),( ), 

( ),( ), 

 ( ),( ) 

1.44 

( ),( ),  

( ), ( ), 

( ),( ),  

( ),  

         
Table 4 Equilibrium points on plane   when 

1 1 2 30.9, 0.2, 0.001, 0.002, 0.003.p p p     

  Location of non-collinear libration points  0 0,   

1 
( ), ( ), 

( ), ( ), 

( ),( ), 

( ), ( ) 
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( ),( ), 

 ( ), ( ), 

Table 5 Equilibrium points on plane   when 

1 1 2 31, 0, 0.001, 0.002, 0.003p p p      (Cor

responding to the classical case of restricted four-body problem) 

  Location of non-collinear libration points  0 0,   

1 

( ),( ), 

( ),( ), 

( ),( ), 

( ),( ) 
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( ),( ), 

( ), ( ) 
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( ),( ), 

( ), ( ), 

( ),( ), 

( ), ( ) 

1.4

4 

( ), ( ), 

( ), ( ), 

( ),( )

, ( ),  

Table 6 Equilibrium points on plane   when 

1 1 2 31, 0, 0.01, 0.02, 0.03,p p p       

(Corresponding to the classical case of restricted four-body 

problem) 

  Location of non-collinear libration points  0 0,   

1 
( ), ( ), 

( ), ( ), 

( ),( ), 

( ), ( ) 
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( ),( ), 
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( ),( ), 

( ),( ), 
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( ), ( ), 

( ), ( ), 

( ), ( ) 

1.44 
( ),( ), 

( ),( ), 

( ), , 

( ), ( ) 

Table 7 Out-of-plane equilibrium points when 
 

  
Location of libration points  0 0,   

1 
( ),( ),  

( ) 

1.2 
( ,± ),( ),  

( ) 

1.3 ( ,± ), 

(  

1.4 ( ,  ± ),  

 ( , 0),( , 0) 

1.44 ( , ± ),  

 ( , 0),( , 0) 

1 1 2 30.5, 0.2, 0, 0.01, 0.02, 0.03,p p p         

The Tables 1 to 6 shows that there is no collinear libration 

point and at most eight non-collinear libration points exist. 

The table 7 shows that there are two non-collinear libration 

points which are symmetrical about axis   and two 

collinear libration points. For 1 0  , the fourth 

infinitesimal mass decreases with time and the libration 

points continuously approach towards the origin of the 

coordinate system .  

4. ZERO VELOCITY CURVE 

Zero velocity curves define boundary, which separates 

regions where the motion is allowed or forbidden. We can 

draw the zero velocity curves by the relation 2W- C = 0. 

Thus, the equation  

 

      

2
2 21

2
1 2 33/2 21

1 2 3

4

1 2 1 1 1
2

4

p p p
C


  

   
 

  

 
   

 

    
    

 

 

 gives more information about the possible dynamics at a 

Jacobi constant C. We have drawn the zero velocity curves 

of our problem for different values of the Jacobian constant 

C corresponding to the table 1 for the value β = 1 and 
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similarly we can draw the zero velocity curves for all the 

values of β. The infinitesimal body is free to move only 

outside of the bounded green regions. 

 
 

         
 

         
 

           
 Zero velocity curves for different values of C 

corresponding to the libration points for 1,  in the table-1. 

5   STABILITY OF THE LIBRATION POINTS 

For the linear stability of the libration points, we give 

displacement to 
0 0 0( , , )   as 

 0 u   , 0 v   , 0 w   , 

  , , 1u v w                                                    (7) 

where 0 0 0( , , )   is the libration point for a fixed value of 

time t. 

From the equations (5) and (7), we obtain the variational 

equations as 

 0 0 02 ( ) ( ) ( ) ,u v W u W v W w       

 
0 0 02 ( ) ( ) ( ) ,v u W u W v W w       

 
0 0 0( ) ( ) ( ) ,w W u W v W w          (8) 

where the subscript ‘0’ in equations (8) represents that the 

values are to be found at the libration 

point
0 0 0( , , )   under consideration. We have 
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

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3
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3
1 1 2
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,

p

W W
p

p

 

  




 
   





   




  
 



     
      

   


  
      

  
 





 

 
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 
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2

1
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1
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1
2
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4
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2
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,

p

p

W

p

p p p












  









  


  

 
 

 
 

    
         

   
 

       
 

    
   

 
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p
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
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
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  
 


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2
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p
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p
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






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







 
 

 
  
    
     
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   
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   
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p

W
p p

p
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


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 

 
 






 

 

  
 

  
  
   
 

   
 
 
  
   
 

                            

                                                                                           (9) 

If we take 1 0  , the system (8) reduced to a system with 

constant mass. For 1 0  , the coordinates of the three 

primaries vary with time t and their distances to the libration 

point 0 0 0( , , )   decrease with time. So, we use the space-

time inverse transformations of Meshcherskii [19] 

i.e.
1/2x   ,

1/2y   , 
1/2z  

 
. The positions of 

the primaries are fixed therefore their distances to the 

libration points will not be changed. 

In phase-space, equations (8) may be written as 

1u u ,  1v v ,  1w w ,  

1 1 0 0 02 ( ) ( ) ( ) ,u v W u W v W w       

1 1 0 0 02 ( ) ( ) ( ) ,v u W u W v W w       

1 0 0 0( ) ( ) ( ) .w W u W v W w           (10) 

Using Meshcherskii [19] inverse transformations, and 

putting 

1/2x u   , 
1/2y v   , 

1/2z w   , 

1/2

1u u   , 
1/2

1v v   , 
1/2

1w w   , 

in the matrix, the system (10) can be written as follows: 

1

1

1

1
0 0

1
0 0

1
0

0 0 1 0 0
2

0 0 0 1 0
2

0 0 0 0 1
2

 

( ) ( ) 0 2 0
2

( ) ( ) 0 2 0
2

0 0 ( ) 0 0
2

dx

dt

dy
x

dt
ydz

zdt

du u
W W

dt v

dv wW W
dt

dw
W

dt

 

 

















   
   
   

   
    

        
    

        
    
        

   
   

  
  

.










          (11) 

The linear stability of the solution of the matrix depends on 

the existence of stable region of the libration`n point, which 

in turn depends on the boundedness of the solution of linear 

and homogenous system of equations (11). We have 

determined the linear stability of the libration points. For 

this, we found the characteristic roots of the coefficient 

matrix of equation (11) numerically. 

The characteristic equation of the coefficient matrix is 

6 5 2 4 3 3 4 2 2

1 1 1 1 1 1

5 3 6 4 2

1 1 1 1 1 1

15 5 15 3
3 2

4 2 16 2

3 1 1 1 1
0,

16 2 64 16 4

P P P Q

P Q P Q R

          

      

     
            

     

   
          
   

     (12) 

where 
2

0 0 04 ( ) ( ) ( ) ,P W W W         

 

0 0 0 0 0 0

2 2

0 0

( ) ( ) ( ) ( ) ( ) ( )

4 ( ) ( ) ,

Q W W W W W W

W W

     

 

  

 
 

2

0 0 0 0 0( ) ( ) ( ) ( ) ( ) ,R W W W W W        

where values of  , , andW W W W     are given by 

equations (9). 

The characteristic roots of the equation (12) have been 

calculated at various libration points in the range 

 

0 1,  0 0.2,  0.019,1 1.44
1

and 1 1to3 .p i
i

         

 
  

We have observed that in all eight liberation points, for 

three liberation points (dark black coordinates in the tables) 

there exists complex characteristic roots, means the 

liberations points are asymptotically stable and rest five 

liberation points have at least one real characteristic root, 

means that these five libration points are unstable. 

 

5 CONCLUSION AND DISSCUSSION 
We have investigated existence and stability of the libration 

points in the photogravitational circular restricted four-body 

problem with the effect of perturbation and variable mass 

and the primaries with masses 1m , 2m and 3m  

( 1 2 3m m m  ). It has been found that at most eight 

libration points exist and all are non-collinear. We have also 
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found that the libration points exist in the out-of-plane 

(Table 7). Also we have drawn the zero velocity curves and 

found that the infinitesimal mass will move only in the 

particular region of the whole region and forbidden in the 

bounded green region. And finally, we have investigated the 

stability of the liberation points. And found that out of eight 

liberation points, three are asymptotically stable (dark black 

in the tables) and five are unstable for all values of the 

parameters. Our result is differ from the result of Singh et al. 

[8] as they found that two out of eight liberation points are 

stable and rest six are unstable.   

 

Acknowledgement 

 We are thankful to the Deanship of Scientific Research, 

College of Science in Zulfi, Majmaah University, 

Kingdom of Saudi Arabia for providing all the research 

facilities in the completion of this research work. 

 

REFERENCES 
1. Radzievskii, V.V. The Restricted Problem of Three 

Bodies Taking Account of Light Pressure. 

Astronomical Journal, 27, 249 (1950). 

2. Radzievskii, V.V. The Space Photogravitational 

Restricted Three-Body Problem. Astronomical Journal, 

30, 225 (1953). 

3. Simmons, JFL., Mcdonald, AJC. and Brown, JC  The 

restricted three body problem with radiation pressure. 

Celest. Mech. 35, 145 (1985). 

4. Kumar, V. and Chaudhary, R.K. Existence of libration 

points in the generalized photogravitational restricted 

problem of three bodies. Celest. Mech.  39, 159-171 

(1986). 

5. Singh, J., Ishwar, B. Effect of perturbations on the 

location of equilibrium points in the restricted problem 

of three bodies with variable mass. Celest. Mech. 32(4), 

297-30 (1984). 

6. Singh, J., Ishwar, B. Effect of perturbations on the 

stability of triangular points in the restricted problem of 

three bodies with variable mass. Celest. Mech. 35, 201-

207 (1985). 

7. Singh, J., Leke, Stability of photogravitational restricted 

three-body problem with variable mass, Astrophysics 

and Space Sci. 326 (2), 305-314 (2010). 

8. Singh, J., Vincent, A. E. Effect of perturbations in the 

Coriolis and centrifugal forces on the stability of 

equilibrium points in the restricted four-body problem. 

Few-Body Syst. 56, 713–723 (2015), DOI 

10.1007/s00601-015-1019-3. 

9. Mittal, A., Ahmad, I. and Bhatnagar, K.B. Periodic 

orbits in the photogravitational restricted problem with 

the smaller primary an oblate body. Astrophys Space 

Sci 323, 65-73 (2009).  

10. Papadouris, J.P., Papadakis, K.E. Equilibrium points in 

the photogravitational restricted four-body problem. 

Astrophysics and Space Science. 344, 21–38 (2013), 

DOI 10.1007/s10509-012-1319-8. 

11. Zhang, M. J., Zhao, C. Y., Xiong, Y. Q. On the 

triangular libration points in photogravitational 

restricted three-body problem with variable mass. 

Astrophysics Space Sci. 337, 107-113  (2012), DOI 

10.1007/s10509-011-0821-8. 

12. Bhatnagar, K.B., Hallan, P.P. Effect of perturbations in 

Coriolis and centrifugal forces on the stability of 

libration points in the restricted problem. Celest. Mech. 

18, 105-112 (1978). 

13. Kalvouridis, T.J., Arribas, M., Elipe, A. Parametric 

evolution of periodic orbits in the restricted four-body 

problem with radiation pressure. Planet. Space Sci. 55, 

475-493 (2007), DOI 10.1016/j.pss.2006.07.005. 

14. Hallan, P. P. and Rana, N.  Effect of perturbations in 

coriolis and centrifugal forces on the location and 

stability of the equilibrium point in the Robe's circular 

restricted three body problem. Planetary and Space 

Science, 49(9), 957–960 (2001).  

15. Hallan, P. P. and Mangang, K. B. Effect of 

perturbations in coriolis and centrifugal forces on the 

Nonlinear Stability of Equilibrium point in Robe`s  

Restricted Circular Three body Problem. Advances in 

Astronomy, 21 (2008). 

16. Raheem, A., Singh, J. Combined effects of 

perturbations, radiations and oblateness on the stability 

of equilibrium points in the restricted three body 

problem. Astronomical Journal 131(3), 1880-188 

(2006). 

17.  Baltagiannis, A.N., Papadakis, K.E. Equilibrium points 

and their stability in the restricted four-body problem. 

International Journal of Bifurcation and Chaos 21, 2179 

(2011), DOI10.1142/S0218127411029707. 

18. Abouelmagd, E.I., Mostafa, A. Out of plane 

equilibrium points locations and the forbidden 

movement regions in the restricted three-body problem 

with variable mass. Astrophysics and Space Sci. 357, 

58 (2015), DOI 10.1007/s10509-015-2294-7. 

19. Meshcherskii, I.V. Studies on the mechanics of bodies 

of variable mass. GITTL, Moscow (1949). 

20. Mccuskey, S.W. Introduction to celestial mechanics, 

Addison-Wesley Publishing Company, Inc. USA 

(1963). 

21. Jeans, J. H. Astronomy and Cosmogony. Cambridge 

University Press, Cambridge (1928). 

 


