ON CHROMATICITY OF LADDER-TYPE GRAPHS

Abdul Rauf Nizami, Mobeen Munir, Amjad Shahbaz Khan, Zakia Shahzadi
Division of Science and Technology, University of Education, Lahore-Pakistan
E-mail: arnizami@ue.edu.pk, mmunir@ue.edu.pk, amjadshahbaz7t@gmail.com, zakiashahzadi@yahoo.com

ABSTRACT: We give general formulas of chromatic polynomial of some interesting families of Ladder-Type graphs, and conclude that, except two, neither two of them are chromatically equivalent. Moreover, some of them are not chromatically unique.
Mathematics Subject Classification: Primary 05C31; Secondary 57M27
Keywords: Chromatic polynomial, Chromatic equivalence, Chromatic uniqueness, λ-coloring, Ladder-type graph

1. INTRODUCTION

The chromatic polynomial was introduced by G. D. Birkhoff in 1912 as a function that counts the number of graph colorings for planer graphs to solve the four color problem [1]. In 1932 H . Whitney generalized it from the planer graphs to the arbitrary graphs [7]. The chromatic polynomial, because of its theoretical and applied importance, has generated a large body of work. Chia [4] provides an extensive bibliography on the chromatic polynomial, and Dong, Koh, and Teo [6] gave a comprehensive treatment.
The following two operations are essential to understand the chromatic polynomial definition for a graph G. These are edge deletion, denoted by $G^{\prime \prime}=G-e$, and edge contraction, denoted by $G^{\prime \prime}=G / e$.
Definition 1.1. The chromatic polynomial is a function P from the set of graphs to the set $\mathbb{Z}[\lambda]$, a ring of polynomials, such that
$P(G)$
$=\left\{\begin{array}{cc}0 & \text { if there is a loop in } G \\ & \lambda^{n} \quad \text { if } G \text { consists of only } n \text { isolated vertice } \\ P(G-e)-P(G / e) & \text { otherwise }\end{array}\right.$
Two graphs are chromatically equivalent if they have the same chromatic polynomial; a graph G is chromatically unique if $P(G)=P\left(G^{\prime}\right)$ implies $G \cong G^{\prime}$.

For a positive integer λ, a λ-coloring of a graph G is a mapping of $V(G)$ into the set $\{1,2,3, \ldots, \lambda\}$ of λ colors. Thus, there are exactly λ^{n} colorings for a graph on n vertices. If φ is a λ-coloring such that $\varphi(u) \neq \varphi(v)$ for all $u v \in E$, then φ is called a proper (or admissible) coloring. The chromatic number of a graph G, denoted by $\gamma(G)$, is the smallest number of colors needed to color the vertices of G so that no two adjacent vertices share the same color.
Remark 1.2. Every evaluation of chromatic polynomial at some number λ actually gives the λ-coloring of the graph.
Since we are interested mainly in ladder-type graphs, we define them here. First, the two closely related definitions:
Definition 1.3. A ladder graph L_{n} is the Cartesian product of path graphs P_{n} and P_{2} :

We define a ladder-type graph a ladder graph with addition of some edges and vertices, in some pattern, keeping the main $S_{\text {structure of }} L_{n}$ intact.
The ladder type graphs we are concerned with are:
c) $P\left(L_{n_{7}}\right)=\lambda(\lambda-1)\left(\lambda^{2}-3 \lambda+3\right)^{n_{7}}\left(\lambda^{3}-5 \lambda^{2}+\right.$ $10 \lambda-7)^{n_{7}}$, and
d) $P\left(L_{n_{6}}\right)=\lambda(\lambda-1)(\lambda-2)^{n_{8}}(\lambda-3)^{n_{8}}\left(\lambda^{2}-3 \lambda+\right.$ $3)^{n_{8}}$

Besides the above graphs, the following are special types of ladder-types graphs. These are actually obtained by appending the ladder graph L_{n} to the graphs $L_{n_{1}}, L_{n_{2}}, L_{n_{3}}$, and $L_{n_{4}}$.

We shall give the chromatic polynomials of these graphs as a corollary of the general result:
Theorem 1.7. If a graph G is obtained by appending L_{n} to a graph G_{1} such that they share nothing except just one edge, then

$$
P(G)=\left(\lambda^{2}-3 \lambda+3\right)^{n} P\left(G_{1}\right)
$$

Corollary 1.8.

a) $P\left(L_{n_{1}, n}\right)=\lambda(\lambda-1)(\lambda-2)^{2 n_{1}}$
b) $P\left(L_{n_{2}, n}\right)=\lambda(\lambda-1)(\lambda-2)^{4 n_{2}}\left[\lambda^{2}-3 \lambda+\right.$ $3]^{n}$.

Lemma 1.9.

a) $\quad P\left(L_{n_{1}, n, n_{1}}\right)=(\lambda-2)^{2 n_{1}} P\left(L_{n_{1}, n}\right)$
b) $\quad P\left(L_{n_{2}, n, n_{2}}\right)=(\lambda-2)^{4 n_{2}} P\left(L_{n_{2}, n}\right)$
c) $P\left(L_{n_{3}, n, n_{3}}\right)=\left(\lambda^{2}-5 \lambda+10 \lambda-7\right)^{n_{3}} P\left(L_{n_{3}, n}\right)$
a) $\quad P\left(L_{n_{4}, n, n_{4}}\right)=(\lambda-2)^{n_{4}}(\lambda-3)^{n_{4}} P\left(L_{n_{4}, n}\right)$

The more general ladder-type graphs appear when L_{n} is sandwiched k times in $L_{n_{i}}, 1 \leq i \leq 4$. We denote these graphs
by
$L_{n_{1}, n, n_{1} \ldots n_{1}, n, n_{1}}, L_{n_{2}, n, n_{2} \ldots n_{2}, n, n_{2}}$,
$L_{n_{3}, n, n_{3} \ldots n_{3}, n, n_{3}}$ and $L_{n_{4}, n, n_{4} \ldots n_{4}, n, n_{4}}$, and present their chromatic polynomials in the theorem:

Theorem 1.10.

b) $P\left(L_{n_{1}, n, n_{1} \ldots n_{1}, n, n_{1}}\right)=\lambda(\lambda-1)(\lambda-2)^{2(k+1) n_{1}}\left(\lambda^{2}-\right.$ $3 \lambda+3)^{k n}$
c) $P\left(L_{n_{2}, n, n_{2} \ldots n_{2}, n, n_{2}}\right)=\lambda(\lambda-1)(\lambda-2)^{4(k+1) n_{2}}\left(\lambda^{2}-\right.$ $3 \lambda+3)^{k n}$
c) $\quad P\left(L_{n_{3}, n}\right)=\lambda(\lambda-1)\left(\lambda^{3}-5 \lambda^{2}+10 \lambda-\right.$ 7) ${ }^{n_{3}}\left[\lambda^{2}-3 \lambda+3\right]^{n}$
d) $P\left(L_{n_{4}, n}\right)=\lambda(\lambda-1)(\lambda-2)^{n_{4}}(\lambda-3)^{n_{4}}\left[\lambda^{2}-\right.$ $3 \lambda+3]^{n}$
If L_{n} is sandwiched between ladder-type graph $L_{n_{i}}, 1 \leq i \leq$ 4 , then we shall denote the resultant ladder-type graph by $L_{n_{i}, n, n_{i}}$. The chromatic polynomial of the following graphs are given in a lemma:
d) $P\left(L_{n_{3}, n, n_{3} \ldots n_{3}, n, n_{3}}\right)=\lambda(\lambda-1)\left(\lambda^{2}-5 \lambda+10 \lambda-\right.$ 7) ${ }^{(k+1) n_{3}}\left(\lambda^{2}-3 \lambda+3\right)^{k n}$
e) $P\left(L_{n_{4}, n, n_{4} \ldots n_{4}, n, n_{4}}\right)=\lambda(\lambda-1)(\lambda-2)^{(k+1) n_{4}}(\lambda-$ 3) ${ }^{(k+1) n_{4}}\left(\lambda^{2}-3 \lambda+3\right)^{k n}$

The chromatic equivalence and chromatic uniqueness of these graphs are reflected in the theorem:
Theorem 1.11.
a) Neither two of $L_{n}, L_{n_{1}}, L_{n_{3}}$, and $L_{n_{4}} \quad$ are chromatically equivalent.
b) $L_{n_{1}}$, and $L_{n_{2}}$ are chromatically equivalent if $n_{1}=2 n_{2}$, but are not chromatically unique.
c) $L_{n_{1}, n}, L_{n_{3}, n}$ and $L_{n_{4}, n}$ are not chromatically unique.

2. PROOFS

This section contains the proofs of the results we got
Proof of the theorem 1.5(c). We proceed by induction on n_{3}. For $n_{3}=1$ we got

$$
\begin{aligned}
& P(\boxed{\swarrow})=P(\square)-P(\boxed{\swarrow})=P(\sqrt{\zeta})-P(\sqrt{\square})-P(\sqrt{\square})+P(\diamond \infty)=(\lambda-2) P(\square)+
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}(\downarrow)-\mathrm{P}(\downarrow))+\mathrm{P}(\square)+(\lambda-1) \mathrm{P}(\zeta)=(\lambda-2) 2)((\lambda-2) \mathrm{P}(\downarrow)+\mathrm{P}(\eta)-\mathrm{P}(\varrho))+(\lambda- \\
& \text { 1) }(\mathrm{P}(\leftrightarrows)-\mathrm{P}(\bigodot))=(\lambda-2)\left((\lambda-2)\left\{\mathrm{P}\left(\prod^{*}\right)-\mathrm{P}(\downarrow)\right\}+\mathrm{P}(\cdot)-\mathrm{P}(*)\right)+(\lambda-1)(\mathrm{P}(\cdot \quad \%)-\mathrm{P}(\cdot))=(\lambda- \\
& \text { 2) }\left((\lambda - 2) (\lambda - 1) P \left(\left)+\left(\lambda^{2}-\lambda\right)\right)+(\lambda-1)\left(\lambda^{2}-\lambda\right)=(\lambda-2)\left((\lambda-2)(\lambda-1)\{P(\cdot)-P(\cdot)\}+\left(\lambda^{2}-\lambda\right)\right)+\right.\right. \\
& \lambda(\lambda-1)^{2}=(\lambda-2)\left((\lambda-2)(\lambda-1)\left(\lambda^{2}-\lambda\right)+\left(\lambda^{2}-\lambda\right)\right)+\lambda(\lambda-1)^{2}=\lambda(\lambda-1)\left(\lambda^{3}-5 \lambda^{2}+10 \lambda-7\right)
\end{aligned}
$$

Now with the assumption that the result holds for an arbitrary n_{3}, we have

as was required.
Proofs of the parts (a), (b), and (d) are similar.
Proof of Proposition 1.6. Here we give only the proof of part (d); other parts can be proved similarly.
We again prove it by induction on n_{8}. For $n_{8}=1$ we have

Now with the assumption that the result holds for an arbitrary n_{8}, we have

$\left(\lambda^{2}-3 \lambda+3\right)(P(2)-2$

$\left(\lambda^{2}-3 \lambda+3\right)(P(\square-\infty)-P(\square)-\infty+\infty$
$\left.P\left(\square^{-} \square \square\right)-P\left(\square \square^{-\square \square}\right)+P\left(\square \square^{-\square \square}\right)\right)=$
$\left(\lambda^{2}-3 \lambda+3\right)(\lambda-3)\left(P\left(\square \square^{-} \square \square\right)-P\left(\square \square^{-\square}\right)-P\left(\square \square^{-\square}\right)+\right.$
$P(\square-\infty)=\left(\lambda^{2}-3 \lambda+3\right)(\lambda-3)(\lambda-2) P(\lambda)=\left(\lambda^{2}-3 \lambda+3\right)(\lambda-3)(\lambda-$
2) $\left(\lambda(\lambda-1)(\lambda-2)^{n_{8}}(\lambda-3)^{n_{8}}\left(\lambda^{2}-3 \lambda+3\right)^{n_{8}}\right)=\lambda(\lambda-1)(\lambda-2)^{n_{8}+1}(\lambda-3)^{n_{8}+1}\left(\lambda^{2}-3 \lambda+3\right)^{n_{8}+1}$.

Proof of Theorem 1.7. We proceed induction on n :
For $n=1$, We get

$$
\begin{aligned}
& P(\sigma \square)=P(G \square)-P(G)=P(G L)-P(G L)-P(G L)-P(G D) \\
& =(\lambda-2) P\left(\mathrm{a}_{\mathrm{C}} \mathrm{~L}\right)+P\left(\mathrm{a}_{\mathrm{I}} \mathrm{I}\right)-P(\mathrm{G} \bigcirc)=(\lambda-2)\left[P(\mathrm{G} I .)-P\left(\mathrm{a}_{\mathrm{G}} \mathrm{I}\right)\right]+P(\mathrm{G} I) \\
& =[(\lambda-2)(\lambda-1)+1] P\left(\sigma_{I} I\right)=\left(\lambda^{2}-3 \lambda+1\right) P\left(G_{1}\right) \text {. }
\end{aligned}
$$

Suppose the result holds for $n=k$, that is

$$
P(\square \square \square)=\left(\lambda^{2}-3 \lambda+1\right)^{k} P\left(G_{1}\right)
$$

Now for $n=k+1$, we have

as was required.
Proof of lemma 1.9. We give only proof of part (b), which is the most difficult; other parts have similar proofs. Instead of the long ladder

We shall use a short form as

When a single unit) of $L_{n_{2}}$ is appended to n_{2}
$P\left(L_{n_{2}, n, 1}\right)=P\left(\square n^{n}\left[{ }^{n} \square \square\right)=P\left(\square n^{n_{2}}\right.\right.$

$-P\left(\boxed{n_{2}}\left[{ }^{n} \square\right)=(\lambda-2) P\left(\square n_{2} \square{ }^{n} \square \square\right)\right.$
$=(\lambda-2)\left[P\left(\begin{array}{ll}n_{2} & { }^{n} \square \\ \hline\end{array}\right.\right.$
$=(\lambda-2)\left[P(\square)-P\left(n^{n} \square n^{n} \square \square\right)-P\left(n^{n} \square{ }^{n} \square \square\right)\right.$

$=(\lambda-2)^{2}\left[P\left(\begin{array}{ll}n_{2} \square & n \square\end{array}\right)-P\left(\begin{array}{ll}n_{2} & n \square \\ n_{2} & n \\ \end{array}\right.\right.$

$=(\lambda-2)^{3}\left[P\left({ }^{n_{2}}{ }^{n} \square\right)-P\left(\begin{array}{ll}n_{2} \square & n \\ \end{array}\right)\right]$

$=(\lambda-2)^{4} P\left({ }^{n_{2}} n\right)$
Now suppose the result holds when the appended ladder $L_{n_{2}}$ has k units, that is

$$
P\left(L_{n_{2}, n, k}\right)=P\left({ } ^ { n _ { 2 } } \left[{ }^{n}\right.\right.
$$

If the appended ladder has $k+1$ units, then we recieve

March-April

which is required result.
Proof of the Theorem 1.10. In each case, apply recursively Lemma 1.9 and Theorem $1.5 k$ times and then use $P\left(L_{n_{1}}\right)$.
Proof of the Theorem 1.11. 1. Obvious; just see Theorem 1.5.
2. Simply observe that if $n_{1}=2 n_{2}$, then $P\left(L_{n_{1}}\right)=P\left(L_{n_{2}}\right)$. These are not chromatically unique because $L_{n_{1}} \neq L_{n_{2}}$; just observe that there are vertices of degree 5 in $L_{n_{2}}$ but are not in $L_{n_{1}}$.
3. It is obvious; simply observe that $P\left(L_{n_{1}, n}\right)=P\left(L_{n_{5}}\right)$, $P\left(L_{n_{2}, n}\right)=P\left(L_{n_{6}}\right), \quad P\left(L_{n_{3}, n}\right)=P\left(L_{n_{7}}\right), \quad$ and $\quad P\left(L_{n_{4}, n}\right)=$ $P\left(L_{n_{8}}\right)$ while $L_{n_{1}, n} \nsubseteq L_{n_{5}}, L_{n_{2}, n} \neq L_{n_{6}}, L_{n_{3}, n} \nsubseteq L_{n_{7}}, L_{n_{4}, n} \nsubseteq$ $L_{n_{8}}$.

REFERENCES

[1] Birkhoff, G. D., "A Determinant Formula for the Number of Ways of Coloring a Map," Annals of Mathematics, 14, 42-46, (1912)
[2] Bollobás, B., "Modern Graph Theory," Springer, New York, (1998)
[3] Chartrand, G., Lesniak, L., Zhang, P., "Graphs and Digraphs," CRC Press, Chapman and Hall Book, Boca Raton, (2011)
[4] Chia, G. L., "A Bibliography on Chromatic Polynomials," Discrete Mathematics, 172, 175-191, (1997)
[5] Diestel, R., "Graph Theory," Spinger, 1997.
[6] Dong, F. M., Koh, K. M., Teo, K. L., "Chromatic Polynomials and Chromaticity of Graphs," World Scientific, New jersey, (2005)
[7] Whitney, H., "A logical Expression in Mathematics," Bull. Amer. Math. Soc, 38, 572-579, (1932)

