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1.0 INTRODUCTION 
The concept of cone metric spaces was introduced by Huang 

and Zhang, as a generalization of an ordinary metric spaces. 

They studied the convergence of sequences among other 

topological properties of such spaces, and then proved some 

fixed point results of contractive mappings in these spaces 

[12]. They gave the cone metric space version of Banach 

contraction principle and other related existing results in 

metric spaces. Later on, relaxing an assumption of normality 

of order inducing cone, Rezapour and Hagi [33] obtained some 

fixed point theorems, as the generalizations of the results in 

[12]. They presented a number of examples of non-normal 

cones to show that such generalizations are meaningful. Since 

then, many authors have been in the area of fixed point theory 

in the setting of cone metric spaces [1, 2, 5, 8, 10, 13, 14, 

15,16, 17, 32, 33]). 

On the other hand, Ćirić [6] introduced the notion of 

quasi-contraction as one of the most general contractive type 

maps and prove the related fixed point theorem. Ilić [13] 

obtained some fixed point resuts of quasi contraction on a cone 

(normal) metric space and hence generalized the results of 

Huang and Zhang [12] and Ćirić [6]. Kadelburg et al. [16] 

obtained a fixed point result of quasi contraction mappings 

without using the normality condition. For more work in this 

direction, we refer to [10] and references therein.  

Kirk et al. [21] generalized the Banach contraction principle 

employing the concept of cyclic contraction mappings on two 

closed subsets of a complete metric space. Petrusel [26] 

proved some results about periodic points of cyclic contraction 

maps and  generalized the main result in [21]. Eldered and 

Veeramani [9] proved some results about best proximity 

points of cyclic contraction maps. 

Recently, Hagi et al. [11] defined the notion of distance 

between two subsets in regular cone metric spaces and studied 

some necessary conditions to obtain the existance of best 

proximity points of cyclic contraction mappings on regular 

cone metric spaces. Abbas et al. [4] introduced the notions of 

proximal cyclic contractions and prove best proximity point 

results in the setup of regular cone metric space. For more 

results on best proximity points we refer to [3],18-20, 24-25, 

27-31,34-36] and references therein).   

We further continue the work in this direction to prove the best 

proximity point results of quasi contraction mappings in 

regular cone metric spaces. Our results generalize the results in 

[10].  

2.0  PRELIMINARIES 
Following definitions and results will be needed in the sequel:  
A subset P of a Banach space E is called a cone if  

1. P  is non-empty closed and { }P  ;  

2. PPP   for all non-negative real numbers  , ;  

3. }{=)( PP  ,  

where   denotes the zero element of the E . For a given 

cone EP , we can define a partial ordering   with 

respect to P  as follows: x y  if and only if .y x P   

By ,x y  we mean x y and yx  , while yx  stands 

for int ,y x P   where Pint denotes the interior of .P If 

intP   then P  is called a solid cone. 

The cone P  is called normal if there is a number 0>M  

such that for all ,x y P ,  

|| || || || .x y x M y       

The least positive number satisfying above is called the normal 

constant of P [12]. 

The cone P is called regular if every increasing sequence 

which is bounded from above is convergent. That is, if 1{ }n nx 

is a sequence such that yxx  ...21  for some Ey , 

then there is Ex  such that || ||= 0lim n
n

x x


 . 

Equivalently the cone P  is regular if and only if every 

decreasing sequence which is bounded from below is 

convergent. It is known that every regular cone is normal [33]. 

In the following we assume that P  is a cone in E  with 

intP   and   is the partial ordering with respect to P .  

Definition 2.1 (See [12], [23] and [26]) Let X  be a 

non-empty set. Suppose that the mapping EXXd :  

satisfies   

1.    ( , )d x y  for all Xyx ,  and   

    ( , ) =d x y   if and only if yx = ;  

2.  ),(=),( xydyxd  for all Xyx , ;  

3.  ( , ) ( , ) ( , )d x y d x z d z x   for all  

    Xzyx ,, .  

Then d  is called a cone metric on ,X and ),( dX  is called 

a cone metric space with a Banach space .E   

Following are some known examples of cone metric space: 

Example 2.2 Let =X , 
nE =  and 

0}:),...,{(= 1  i

n

n xxxP  . It is easy to see that 

EXXd :  defined by 

 |)||,...,||,(|=),( 11 yxkyxkyxyxd n    is a 

cone metric on X , where 0ik  for all 1}{1,...,  ni .  
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Example 2.3 [33] Let [0,1]= 1CE  with  

|| ||=|| || || ||x x x 
  

on ={ : ( ) 0 for [0,1]}P x E x t t   . This cone is not 

normal. Consider, for example,  

 .
2

1
=)( and 

2

1
=)(









n

sinnt
ty

n

sinnt
tx nn

 

Since || ||=|| ||=1n nx y and 

2
|| ||= 0

2
n nx y

n
 


, 

it follows that P  is non-normal.  

A sequence }{ nx  in a cone metric space X is called a 

convergent sequence if for every c in E with c , there is 

0n   and x X such that for all 0> nn , 

cxxd n ),( . We denote it by xxn
n

=lim


, or xxn  ; 

n . If for every c  in E  with c , there is 

0n  such that for all 0>, nmn , cxxd mn ),( , then 

}{ nx  is called a Cauchy sequence in X . If every Cauchy 

sequence is convergent in X , then X  is called a complete 

cone metric space.  

Let ),( dX  be a cone metric space. Then we have the 

following properties:   

(P1)   If u v  and wv  then wu  .  

(P2)   If u c   for each intPc  then  

  =u  .  

(P3)   If cba   for each intPc  then   

  ba  . 

(P4)   If x y   , and a  , then  

  ax ay   . 

(P5)   If n nx y    for each n , and  

  xxn
n

=lim


, yyn
n

=lim


, then x y   .  

(P6)   If ( , )n nd x x b    and nb  , then     

  xxn  .  

(P7)   If E  is a real Banach space with a cone P   

  and if kaa  , where Pa  and  

  0 < < 1k , then =a  . 

(P8)   If intPc , na   and na  , then  

  there exists 0n  such that for all 0> nn  we  

  have can  .  

From (P8), it follows that the sequence }{ nx  converges to 

Xx  if ( , )nd x x   as n  and }{ nx  is a 

Cauchy sequence if ( , )n md x x   as mn, . 

Throughout this paper, E is a real Banach space, ),( dX is a 

regular cone metric space,  is the partial ordering with 

respect to P  and BA,  are nonempty subsets of X . We say 

that A is bounded whenever there exists e  such that 

( , )d x y e   

for all , .x y A    

Lemma 2.4 [7] Let ( , )X d  be a cone metric space. 

Suppose that { }nx  is a sequence in X  and that 

{ }nb  is sequence in E . If  

 ( , x )n m nd x b     

for m n  and nb  , n , then nx  is a 

Cauchy sequence.    
Definition 2.5 [11] An element p P  is said to be a lower 

bound for A B  whenever  

( , )p d a b  

for all ( , )a b A B  . Moreover, if qp   for all lower 

bound q  for A B , then p  is called the greatest lower 

bound for A B . In this case, we denote it by ),( BAdis . 

Clearly in above definition, ),( BAdis is a unique vector in 

.P Also,   is always a lower bound for A B .  

  

3.0 MAIN RESULTS 
In this section, we define the notion of quasi contraction for a 

non-self-mapping and prove best proximity point theorem in 

the framework of regular cone metric spaces.  

If ( , )p d A B , we set 

0   { :  ( ,  )  for some }A x A d x y p y B      

and 

0   { :  ( ,  )  for some }.B y B d x y p x A       

We start with the following definition: 

Definition 3.1 Let A and B be closed subsets of a cone 

metric space ),( dX , and let : .f A B Then f  is called 

quasi contraction if for some constant (0,1)  and for 

every Ayx , , there exists an element  

( ; , ) ={ ( , ) , ( , ) ,u C f x y d x y p d x fx p    

     ( , ) , ( , ) , ( , ) },d y fy p d x fy p d y fx p    

such that  

( , ) ,d fx fy u   (1) 

for some .p P   

Theorem 3.2 Let BA,  be closed subsets of a complete cone 

metric space ),( dX  with a solid cone , ( ) .P int P   Let

BAf : be continuous quasi-contraction with 

BAf )( . Then f  has unique best proximity point 
x  

in A .  

Proof. First we will prove the following inequalities for 

arbitrary Xx :   
1( ) ( ( ), ( )) (1 ) ( ( ), ) ),ni d f x f x d f x x p    
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1( ) ( ( ), ) (1 ) ( ( ( ), ) ),nii d f x x d f x x p     for 

n . 
(i) is true for 1=n . Suppose that it’s satisfied for each 

nm  . Since
1( ( ), ( )) ( ),nd f x f x u   where 

1{ ( ( ), ) , ( ( ), ( )) ,n n nu d f x x p d f x f x p      

     
1

( , ( )) , ( ( ), ( )) ,

( , ( )) },

n

n

d x f x p d f x f x p

d x f x p

 


 

we will consider the following cases: 

Case-I: If = ( ( ), )nu d f x x p , then  

))(),(( 1 xfxfd n
 

( ( ( ), ) )

( ( ( ), ( ))) ( ( ( ), ) )

n

n

d f x x p

d f x f x d f x x p



 

 

  
 

1(1 ) ( ( ( ), ) ) ( ( ( ), ) )d f x x p d f x x p        
1= ( ( ( ), ) ) (1 ) ( ( ( ), ) )

( ( ( ), ) )

d f x x p d f x x p

d f x x p

  



    

 
1= (1 ) ( ( ( ), ) ).d f x x p    

1 1( ( ), ( )) (1 ) ( ( ( ), ) ).nd f x f x d f x x p     

Case-II: If = ( ( ), ( ))nu d f x f x p , then  

))(),(( 1 xfxfd n
 

1

( ( ( ), ( )) )

((1 ) ( ( ( ), ) ) )

nd f x f x p

d f x x p p



  

 

   
 

1= (1 (1 ))((1 ) ( ( ( ), ) ) )d f x x p p       
1= (1 ) ( ( ( ), ) ) ( ( ( ), ) )

( )

d f x x p d f x x p

p

  



    

 
1(1 ) ( ( ( ), ) )d f x x p     

1 1( ( ), ( )) (1 ) ( ( ( ), ) ).nd f x f x d f x x p     

Case-III: If = ( ( ), )u d f x x p , then  

))(),(( 1 xfxfd n
 

( ( ( ), ) )d f x x p 
1(1 ) ( ( ( ), ) ).d f x x p     

1 1( ( ), ( )) (1 ) ( ( ( ), ) ).nf x f x d f x x p     

Case-IV: If 
1= ( , ( )) .nu d x f x p  Using the triangular 

inequality,  
1

1

1

( ( ), ( ))

( ( , ( )) )

( ( , ( )) ( ( ), ( )) ),

n

n

n

d f x f x

d x f x p

d x f x d f x f x p











 

  

 

1( ( , ( )) ) ( ( ), ( )),nd x f x p d f x f x      

hence,  
1 1( ( ), ( )) (1 ) ( ( , ( )) ).nd f x f x d x f x p    

Case-V: If 
1= ( ( ), ( ))n nu d f x f x p  , then  

1 1( ( ), ( )) ( ( ( ), ( )) )n n nd f x f x d f x f x p   and 

since f is a quasi-contraction, we have  

1

1

( ( ), ( ))

( ( ( ), ( )) ),

n n

n i j

d f x f x p

d f x f x p



 



 
 

for some },{0,1,2,... ni , 1}{1,2,  nj . The case 

where 1= nj , we have  

1 1( ( ), ( )) (1 ) ( ) =n n id f x f x        

imples 
1( ( ), ( )) = .nd f x f x 

 

On the other hand  
1

1

1

( ( ), ( ))

( ( ( ), ( )) )

(1 ) ( ( ( ), ) )

(1 ) ( ( ( ), ) ),

n

n i j

n i

d f x f x

d f x f x p

d f x x p

d f x x p



  

 





 



 

  

  

 

implies 
1 1( ( ), ( )) (1 ) ( ( ( ), ) ).nd f x f x d f x x p     Hence, 

the inequality (i) holds for all n . 

The inequality (ii) is obtained by (i) as:  

)),(())(),(()),(( xxfdxfxfdxxfd nn   

1(1 ) ( ( ( ), ) ) ( ( ), )d f x x p d f x x      

1 1= (1 ) ( ( ( ), )) (1 ) ( )

( ( ), )

d f x x p

d f x x

       


 

1 1= (1 ) ( ( ( ), )) (1 ) ( )d f x x p       

1= (1 ) ( ( ( ), ) ( ))d f x x p    

n . We now show that { ( )}nf x  is a Cauchy sequence 

in A . Suppose that mn, , nm > . 

Since f is quasi contraction, so there exist ji,  

with ni 1 , mj 1 ,  

))(),(( xfxfd mn
 

1( ( ( ), ( )) )n i jd f x f x p    

1( ( ( ), ( )) ( ( ), ( )) )n i jd f x f x d f x f x p     

1 1

1

((1 ) ( ( ( ), ) )

(1 ) ( ( ( ), ) ) )

n d f x x p

d f x x p p

  

 

 



  

   
 

implies  
1( ( ), ( )) 2 (1 ) ( ( ( ), ) ).n m nd f x f x d f x x p    

Since 
12 (1 ) ( ( ( ), ) ) ,n d f x x p      n , by 

Lemma 2.4, { ( )}nf x  is a Cauchy sequence and so is 

convergent. Thus, there exists Ax  , such that 

.=)(lim




xxf n

n

 

Now, suppose that c   and  . Then there exists 
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0n  such that  

( , ( )) , ( ( ), ( ))n n md x f x c d f x f x  

and 

   
*

0for( , al)) l .( ,nd x f x n m n      (2) 

Now for each 0> nn ,  

( , ( ))

( , ( )) ( ( ), ( ))

( ( ), ( )) . (3)

n n

n

d x f x p

d x f x d f x f x p

c d f x f x p

 

 





 

  

Furthermore, since f is a quasi contraction, we have  

         )())(),(( uxfxfd n 
          (4) 

for some 
1 1{ ( ( ), ) , ( ( ), ( )) ,n n nu d f x x p d f x f x p        

    

1( ( ), ( )) , ( , ( )) ,

( ( ), ( )) }.

n

n

d f x f x p d x f x p

d f x f x p

   



 


 

If 
1 1{ ( ( ), ) , ( ( ), ( )) ,

( ( ), ( )) },

n n n

n

u d f x x p d f x f x p

d f x f x p

  



  


for 

infinitely many 0> nn , then, by (2), (3) and (4), we get  

       ( , ( )) ( ).d x f x p c        (5) 

Since the inequality (5) is true for each c  , we 

get 

  ( , ( )) ( ).d x f x p                      (6)            

If 
1= ( ( ), ( ))nu d f x f x p   ,  

then 
1

1

( ( ), ( ))

( ( ), ) ( , ( ))

n

n

d f x f x p

d f x x d x f x p

 

   



  
 

implies 
1( ) ( ( ( ), ))

( ( , ( )) ).

nu d f x x

d x f x p

 



 

 



 
 

Now by (2), (3) and (4), we get 

( , ( )) ( ) ( ( , ( ) )d x f x p c d x f x p           

and, since c   is arbitrary, it follows  

( , ( ) ( ) ( ( , ( ) )d x f x p d x f x p          

i.e. (1 )( ( , ( )) ) ( ).d x f x p            (7)   

which implies 
1( , ( ) (1 ) ( ).d x f x p                  (8) 

Finally, if = ( , ( ))u d x f x p   , then by (3) and (4), we 

have  

(1 )( ( , ( ) ) .d x f x p c      (9) 

From (9), we conclude that  
1( , ( )) (1 ) ( ).d x f x p c      (10) 

Now, by (6), (8) and (10), for 
n


  and 

, =1,2,...,
c

c n
n



  we get, respectively,  

( )
( , ( )) = ,

,

d x f x p
n n

n

  
  

 
   

    
 



1

1

( , ( ))

(1 )

(1 ) ( )
= , .

d x f x p

c

n

c
n

n








 




 

 

 
   

 


 

 

and 

 
1

1

( , ( ))

(1 )

(1 ) ( )
= , .

d x f x p

n

n
n




 

  


 




 

 

 
   

 


 

 

Therefore, ( , ( )) =d x f x p     gives 

( , ( )) .d x f x p    

If y  is another best proximity point of f , i.e.   

( , ( )) =d y f y p , 
then 

( , ) ( , ( )) ( ( ), ( ))

( ( ), )

2 ( ( , ) )

= 2 ( ( , ))

2 ( ( , ))

= ( ( , ))

d x y d x f x d f x f y

d f y y

p d x y p

p d x y p

p d x y p

p d x y



 





   









 



  

 

  



 

Hence the result follows.   

Corollary 3.3 Let BA, be closed subsets of a complete cone 

metric space ),( dX  with a solid cone P , )(Pint . 

Let BAf :  satisfying  

),(),( yxdfyfxd   

with BAf )(  and (0,1) . Then f  has unique best 

proximity point 
x  in A .  

Taking XBA == in Theorem 3.1 yields the main result of 

[10]. 

 Corollary 3.4 Let ),( dX  be a complete cone metric space 

with a solid cone P , )(Pint . Let XXf : be 

quasi-contraction. Then f has unique fixed point 
x in X
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and the iterative sequence }{ xf n
converges to the fixed point 

for any Xx . 

Taking XBA ==  in Corollary 3.3 we obtained the 

following corollary:  

Corollary 3.5 [10] Let ),( dX be a complete cone metric 

space with a solid cone ,P )(Pint . Let XXf :  

satisfying  

),(),( yxdfyfxd   

for some constant (0,1) . Then f  has a unique fixed 

point 
x in ,X the iterative sequence }{ xf n

 converges to 

the fixed point. 
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