
Sci.Int.(Lahore),29(3),503-507,2017 ISSN: 1013-5316; CODEN: SINTE 8 503 

May-June 

A CRITIQUE BASE SOLUTION ON LEHMAN’S LAW 
Khurram Shehzad

1
, Maqbool Uddin Shaikh

1
 

1Faculty of Computer Sciences, Preston University, Islamabad, Pakistan 
Corresponding Author: arizon45@yahoo.com 

ABSTRACT: Software evolution activities has cost and value for an organization. Unfortunately, software evolution 
processes are still treated in traditional ways though it varies ethnically and organization to organization. Lehman had 
devoted his lo ng life time to reform software processes. He presented most admirable work in the history of software 
evolution processes. Unfortunately his work is still not considered significant by software industry precisely in the Asian 
industry of software development.  Further, Capability  Maturity Models  which  appear after  going  crucial  reforms 
are  mainly  related  from management point of view. Here our scope is not a part of discussion on CMMI models, yet its 
existence cannot be ignored. In this paper, we have discussed in detail the history of software evolution processes and its 
reforms which have been reformed by Lehman in terms of Lehman’s Law. Later a proposed solution is presented to 
overcome the limitations of Lehman’s Laws for software evolution processes. These proposed reforms are done to 
overcome the limitations related to the development of software evolution processes. In this paper we are presenting a 
work flow model, which presents the dependency and solution against complexity issues are presented. 

Keywords: Lehman‟s Law, Critique, software evolution, changing business model. 

 
INTRODUCTIO 
Software is a piece of programming instructions, which 
executes exactly what it is coded for. Software 
development practices are done under a software 
development life cycle (SDLC) model. There are 
ambiguities such as poor requirements, design flaws, trends 
like tools and technologies; and usage because of 
requirements changes are main causes of change in 
software. In view of Sommerville, the process of  
enhancing or  modifying software is called process of 
software evolution [3]. “Evolution is an essential property 
of real-world software” [1]. Bennet P. Lientz in his study 
of the Maintenance Computer Applications Software 
expressed that “As needs change, criteria for satisfaction 
change” [2]. 

“Software evolution is the term used in software 

engineering (specifically software maintenance) to refer to 
the process of developing software initially, then 

repeatedly updating it for various reasons” [1]. E.B. 
Swanson initially identified three categories of  
maintenance which  are  corrective, adaptive, and 
perfective [2]. Preventive as a fourth category of 

maintenance which was introduced in 1980 [2]. When, 
Why, Who, How; such questions raised on change 
request. Sommerville pointed out some reasons for change 
request [3] which are the followings: 

a) Incipient   requisites   appear   during   utilization   
of software. 

b) The industry milieu revolutionizes. 

c) Disappointment of programming either by 
equivocal requisite or by designer's oversights. 

d) New gears integrated or required by the framework. 

e) The framework obliges change in part of execution 
or unwavering quality. 

In 1974, Lehman [5, pp 3-4] expressed that software 
engineers were getting to be progressively keen on 
surveying their benefit measures as far as every day source 
line of code (SLOC).   He   presented   three   laws   related   
to   software evolution process in light of  his analysis 
or  observations, which are listed as; 

1.  Law of continuing change 
2.  Law of increasing entropy 

3.  Law of statistically smooth growth 
 

After having four years industrial software experience 

during 1974 - 1978 Lehman further introduced two more 

laws of software evolution that are listed as; 
 

1.  Law of continuing change 

2.  Law of increasing complexity 
3.  Law of statistically regular growth 
4.  Law of invariant work rate 
5.  Law of incremented growth limit 

 
Lehman further, reformed software evolution laws in 
1980 by applying a new Specified, Problem solving and 
Evolutionary (SPE) Scheme. Consequently different 
researches conducted research in different timing to 
validate these laws. Pirazada [5, pp 6, 8-10, 18-19 and 21] 
and other researchers [6], [12] concluded that the most 
Lehman Laws are  not  valid. If  found it  is  validated 
then it  would be  a specific type of projects, like large 
project. Other short type projects don‟t prove a good 
implementation of Lehman Laws [7], [9]. During 1996 - 
2006 a revised form of Lehman Laws [5, pp-11] were 
presented which are listed below: 

L1: Law of continuing change. 
L2: Law of increasing complexity. 
L3: Law of self regulation. 
L4:  Law of conservation of organizational  stability.  
L5: Law of conservation of familiarity. 
L6: Law of continuing growth.  
L7: Law of declining quality.  
L8: Law of feedback system. 

 

According to Guowu [11] source code metrics and project 
information or defect information is used to analyze 
software growth, characteristics of  software change(s) 
and  software quality. Guowu [11] found in his study that 
Laws L1, L2, L3, and L6 are confirmed and in the 
remaining Laws L4, L5, L7, and L8 evidence to the 
contrary or precise operational definition is required. 
According to Dewayne E. Perry [4] dimensions of 
software evolution are Domains, Experience and Process. 
Further, the sub dimensions are feedback, 
experimentation, understanding, methods,  organization 
and technology. These sub dimensions provide a wide 

mailto:arizon45@yahoo.com


504 ISSN: 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),29(3),503-507,2017 

May-June 

variety of causes for evolution in software systems. These 
dimensions are interrelated in various ways and interact 
with each other in a number of surprising ways. 

In Section I introduction is presented. In Section II 
critiques on Lehman‟s Law is discussed. In Section III 

proposed work is presented. In section IV proposed 
solution implementation workflow has discussed and 
finally in section V conclusion and future work is 
presented. 
CRITIQUE(S) ON LEHMAN’S LAW 

A.  Software evolution, software evolve-ability and 
related Lehmans Laws were studied and discussed by 
several researchers [5], [6] and they pointed that: 

L1: Continuing Change 

“An E-type system must be continually adapted, else it 

becomes progressively less satisfactory in use” [5, pp. 
11] and users concerns should always be consider accepting 
the change. 

L8: Feedback System 

“E-type evolution processes are multi-level, multi-loop 

and multi-agent feedback systems.” [5, pp. 11]. 
During this study, we have argued that L8 orderly placed 
far away. L8 should have been the first to be stated. In 
software evolution, feedback comes first to get and go 
further. Feedback loops create continues development of a 
software product until user satisfaction. Sources of 
feedback can be stakeholders, the application domain, the 
environment in which the system deployed and the self-
feedback in the form of logical errors. Developers must 
be keenly aware that if their software system does not 
respond positively then over time the system will be 
seen as increasingly less appealing by its user base. So 
new positions of L8 would be as L1 and old L1 should 
become L2. 

L2: Increasing Complexity 

“As an E-type is changed its complexity increases and 
becomes more  difficult to  evolve unless  work  is  done  
to maintain or reduce the complexity” [5, pp. 11] and 

L7: Declining Quality 

“Unless rigorously adapted and evolved to take into 

account changes in the operational environment, the 
quality of an E- type system will appear to be declining” 
[5, pp. 11]. 

The laws L2 and L7 are inversely proportional to each 
other because increased in complexity causes decrease in 
quality. This implies that the changes required for system 
evolution makes the system more complex and lower its 
quality [7]. 

L3: Self Regulation 

“Global E-type system evolution is feedback regulated.” 

[5, pp. 11]. 
Over time any measurements of the system will follow 
a well-defined trend, which ripples effects the direction of 

business trends. System has to consider these 
regulations. This shows that 

L4: Conservation of Organizational Stability   
“The work rate of an organization evolving an E-type 

software system tends to be constant over the operational 
lifetime of that system or phases of that lifetime” [5, pp. 
11]. The study of laws L3 and L4, finds that L4 is 

corollary of L3. 

L5: Conservation of Familiarity 
“In general, the incremental growth i.e. growth rate trend 

of E-type systems is constrained by the need to maintain 
familiarity” [5, pp. 11] 

The users should be aware of changes in software so that 
the risk of losing understandability of software may 

reduce [8]. 

L6: Continuing Growth 

“The functional capability of E-type systems must be 

continually enhanced to maintain user satisfaction over 
system lifetime.” [5, pp. 11] 

Since growth means adding new functionalities to software 
and   change   often   means   adding   new   code   [7].   This 

concluded that L6 can be seen at least in part to be corollary 

of L1. Lehmans Laws have sometimes been criticized for 

lack of a solid empirical foundation [9]. 

B. Recent software evolution processes can be further 
categorized in following; 

1. The emergence of software architecture 

The rise of interior edges and subsystem limits by and 

large may cause  unpredictability for  a  substantial 
programming framework [10]. Practically speaking, 
multifaceted nature computation of a substantial 
programming framework is judged by utilizing 
straightforward whole of the extent of the segments [10]. 

This methodology is misdirecting the unpredictability 
measures. Many-sided quality expanded by utilizing outer 
parts e.g. Commercial Off The Shelf (COTS). Case in 
point, gadget drivers now involve more than 60% of the 

source code in the Linux part source appropriation [10]. 
Since drivers speak with whatever remains of the 
framework by means of a moderately slender interface, so 
it is not clear that their inward multifaceted nature has 
much bearing on the many-sided quality of whatever 

remains of the framework and the other way around [10]. 

2. The de-monolithization of software 

systems 
The current era of software development is a very different 

landscape [1]. Systems are embedded within an ecosphere 

of peer components for example libraries, frameworks, 

run-time environments, virtual machines and  services; 

which in  turn may  be  local,  mobile,  distributed,  and  

location  dependent [12].  Creating  such  a  framework  is  

not  about  composing source code. All it is going to 

comprehend accessible administrations, assessing security 

concerns, researching appropriated execution and pointing 

out organization points of interest [12]. A significant part 

of the complexities of current programming improvement 

don't appeared in conventional programming 

measurements [11]. One must assess conceivable parts, 

administrations, use and convey their frameworks inside a 

proper runtime environment [11]. Empirical models of the 

size, complexity, and development efforts of software 

systems need to explicitly recognize that not every 

important factor can be measured easily [11]. 

3. Freeware development and rapid (Agile) 

development methodologies 
Current  software  development  approaches  such  as  agile 



Sci.Int.(Lahore),29(3),503-507,2017 ISSN: 1013-5316; CODEN: SINTE 8 505 

May-June 

approach,   do   not   resemble   the   old-school   model   like 

waterfall [10]. Software development has new trends 

towards freeware or integrating customized COTS module to 

form a complete project whereas, significant resources 

contribute to implement core functionality for project(s) [8]. 

Industrial developers may also take existing open source 

codebases to create  a  customized  suite  to  their  particular  

needs  and released to  the  community [12].  Developer‟s 

contributions and measurement of characteristics of product 

is still answerable [12]. 

4. Emerging Trends in Uses of Software 
Lehmans Law L8: Feedback System perceived that product 

frameworks are installed inside different situations that can 

give criticism being developed of advanced programming 

variant   [9]. Programming frameworks developed by 

changing   necessities   inside   an   advancing   social   and 

specialized environment [11]. Besides, when frameworks are 

created and conveyed, the clients from different hierarchical 

environment impacts   future   improvement patterns   [10]. 

Lehman's verifiable exhortation, think as a framework build 

as opposed to a mathematician whose hypothesis can control 

truths to accomplish coveted objectives [12]. It is an 

actuality programming framework includes science in some 

sense. Its development is not only a question of controlling it 

until it performs a set of coveted usefulness [13]. The 

substances of programming improvement methodologies 

owe   much to weights that lie outside of the formal 

advancement ancient rarities [14]. 

PROPOSED WORK 
In our work some concerns about Lehman‟s Laws are 

presented, which may be considered as rehabilitation for 

software evolution. These concerns are: 

1. Based on Software Development Life Cycle (SDLC) 

models, workflows and documentation [14] the Laws 

presented  by  Lehman  are  not  in  proper  order  as 

shown in  Fig 1.  In  view of  critiques discussed in 

section II, we have proposed a solution, which rearranges 

the order of flow, as shown in Fig 2. 

2. Lehman did not present influence or dependency between 

software and its organizational environment [15]. Our 

given solution will resolve this concerned deficiency. 

3. Software Evolution Process begins after deployment of 

first release of software product [2]. Users should verify 

their concerns and provide feedback. L1: Continuing 

Change law should not be first step to consider. L8:  

Feedback System should be  the  first step to consider as 

shown in Fig 2. 

4. The Law L1: Continuing Change should be the second 

step in software evolution process as shown in Fig 2. 

5. For Law L2: Increasing Complexity Lehman considers 

source line of code (SLOC) as a complexity measure. 

It is observed that SLOC cannot be a true measure of 

complexity [6]. The reason of this according to our 

experience and understanding the number of lines 

written for a software programming code to develop a 

function or a task can vary developer-to-developer, 

organization-to-organization, programming language 

to programming language and programming style. We 

believe that an architectural complexity or modular 

interaction can be a measure of complexity rather than 

SLOC. This is because SLOC depicts dependency or 

development of modules by application. Consider 

entities as nodes and relationship as edges it may 

be useful to measure complexity. Therefore, L2: 

Increasing Complexity should be at third position, 

which is shown in Fig 2. 

6. In development and evolution of a  software product, 

developers  do  unit  testing  for  validation  and  end 

users  do  verification [8].  Due  to  this  reason,  L7: 

Declining  Quality  should  be  fourth  to   consider  as 

shown in Fig 2. 

7. After   implementation   and   having   quality   check, 

software solution of organization reforms its 

ambiguities or flaws [6]. That is how software grows 

in terms of maturity as shown in Fig 2. Therefore Law 

L6: Continuing Growth should be at fifth position to 

consider. 

8. Once software is developed, frequent changes may 

occur due to many other reasons. Advancement in 

software structure and functionality leads to 

standardization. Achieving standards is regulating 

software itself [7].  Therefore, Law L3: Self 

Regulating should be at sixth place as shown in Fig 2. 

9. When software evolved due to the changes provided 

by the stakeholders, it became self-regulated under the 

growth of organization [8]. This applies new reforms 

in organization stability, which is about L4. Therefore, 

L4 should be at seventh position as shown in Fig 2. 

10  Organization becomes synchronized with software, 

after evolving software according to user‟s 

requirements. End user of software product is able to 

provide feedback after familiarization of software [8], 

which is L5: Law of Conservation of Familiarity. 

Therefore, L5 should be at eighth position in software 

evolution process as shown in Fig 2. 

Fig 1 below shows mapping of existing Lehman‟s Laws 

its evolution in environment. The reformed workflow 

based on software development lifecycle (SDLC) is 

shown in Fig 2, which shows mapping of revised 

ordered Lehman‟s Laws by us on the same software 

and its environment. 
 

Fig 1: Basic Flow based on Lehman’s Law  
 



506 ISSN: 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),29(3),503-507,2017 

May-June 

 

Table 1: Old and New formation Comparison 

Of Lehman’s Laws 

Ser 
# 

Old 
Position 

New 
Position 

Reason 

1 L1 L2 Changes comes with feed 
back 

2 L2 L3 Complexity is after change 

3 L3 L6 Till software grows 

4 L4 L7 After self regulation 
software in stable state 

5 L5 L8 Usage of software make 
them familiar 

6 L6 L5 Growth comes with change 

7 L7 L4 Increase in complexity 
gives low quality 

8 L8 L1 Evolution comes after usage 
of software, usage enables 
users to provide feedback 

 

 
Fig 2: Reformed Flow 

 
PROPOSED SOLUTION - IMPLEMENTATION 
WORKFLOW 
To conduct software evolution process successfully it 

needs to have a „workflow record‟. The main reason 

is to carry out details of the evolution process and 

show the complete flow starting from feedback until 

familiarization of changes in software. This workflow 

should provide a solution and track to consider 

evolution process. Lehman in his research or 

industrial   work did not present any workflow for the 

evolution laws. 

Fig. 3 introduces the workflow or lifecycle model of 

our presented work. This workflow is based on 

SDLC. In traditional waterfall model [3 pp. 100], 

SDLC starts from requirement and leads to 

implementation. In modern agile practices [3 pp. 300] 

like requirement changes process are considered on 

different level of consideration.  For this reason, we 

consider basic workflow of SDLC and consider it for 

advance practices 
 
 

 
 

Fig 3: Software Evolution Architecture 
 

The L6:  Self-regulation of software is the process a 

enhancing of software product in itself by comparing 

services provided in different iterations. Software 

iteration process continues till the software complies 

with requirements and got stabilized.  This type of 

software refers to stabilized business workflow that is 

known as L7: conservation of organizational stability. 

L3: increasing complexity of software is based on 

architecture. Strong coupling will raise L4: declining 

quality. To get good quality of  software  we  have  to 

consider loosely coupling and strong cohesiveness. 

Continuous working with software gives an ease of 

usage. It gets familiar with the product, which is L8: 

conservation of familiarity. 

Familiarization of software product enables users to 

analyze and predict ambiguities. This familiarity 

enables users to provide a feedback, which is L1:   

feedback system. 

Feedback based on ambiguities leads to fixation of bugs 

or fulfilling of changes. This process considered as in 

terms of software changes L2: continuing change. 

Continues changes reformed the software product into 

acceptance criteria until its growth accomplish the 

needs of users, which is L5: continuing growth.  

Continuing development until user demands fulfilled, 

software regulates itself.  This is L6:  Self-Regulating 

law. This completes the life cycle of evolution process 

of software with in an environment. 

 
CONCLUSION AND FUTURE WORK 
In this paper, authors have presented different 

perspective of Lehman laws, activities and disciplines. 

Software evolution is not as mature as it should be. 

This work is a big contribution   in   enhancement   of   



Sci.Int.(Lahore),29(3),503-507,2017 ISSN: 1013-5316; CODEN: SINTE 8 507 

May-June 

software   evolution   by Lehman‟s Laws. 

This mutiny in evolution process of Lehman Laws can 

be validated by the industry through surveys and actual 

implementation.  Such implementation will lead   to   

new trends in Software Evolution Process. 

 
REFERENCES 
[1] en.wikibooks.org.[Online]. 

http://en.wikibooks.org/wiki/Introduction_to_Softw
are_Engineering/Deployment/Evolution,  Oct   25, 
2012 [25, Aug, 2014] 

[2] Bennet.P.Lientz, Software Maintenance 

Management: A   Study   of   the   Maintenance   of 
Computer Application Software in 487 Data 

Processing Organizations, 1st ed., E Burton 
Swanson, Ed. Boston, United States: Addison- 
Wesley Pub (Sd), August, 1980. 

[3] Ian Sommerville, Software Engineering, 7th edition, 

Ed. United States, Boston: addison-wesley, 2004, ch. 

21, pp. 488 - 511. 

[4] Dewayne E Perry, "Dimensions of Software 

Evolution," in International Conference on Software 
Maintenance, Chicago, USA, April 2004, pp. 296–
303. 

[5] Israel   Herraiz,   Gregorio   Robles,   and   Jesús   M 

González-Barahona, "The  evolution  of  the  laws  
of software evolution. A discussion based on a 

systematic literature review," in ACM Computing 
Survey, United States, 2013, p. 28. 

[6] Stephen Cook, He Ji, and Rachel Harrison, 

"Software Evolution and Software Evolvability," in 
University of Reading, UK, 2000. 

[7] Robbes Romain and Michele Lanza,"Change- based  

software evolution," in ERCIM Workshop on 

Software Evolution, Lille, France, 2006, pp. 159–
164. 

[8] Steven P. Reiss, "Evolving Evolution," in Principles 

of Software Evolution, Eighth International  
Workshop on IEEE, Lisbon, Portugal, 2005, p. 4. 

[9] Meir M Lehman, et.  al., "Metrics and Laws of 

Software Evolution - The   Nineties View," in 
Software Metrics Symposium, 1997. Proceedings. 
Fourth International IEEE, Albuquerque, NM, USA, 

1997, pp. 20-32. 

[10] Bennett H Keith and Václav T. Rajlich, "Software 

Maintenance and Evolution: a Roadmap," in 
Proceedings of the Conference on the Future of 
Software Engineering, ACM, Limerick, Ireland, 
2000, pp. 73-87. 

[11] Michael W Godfrey and M German Daniel, "On the 

Evolution of Lehman‟s Laws," Evolution and 
Process, vol. 25, no. 7, pp. 663-780, July 2013. 

[12] Guowu Xie, Jianbo Chen, and Iulian Neamtiu, 

"Towards  a Better Understanding of Software 
Evolution: An Empirical Study on Open Source 
Software," in IEEE International Conference 

Software Maintenance, ICSM 2009.  Edmonton, 
Alberta, Canada, 2009, pp. 51-60. 

[13] Wu Jingwei, et. al. "Exploring Software Evolution 

Using  Spectrographs,"  in  Reverse  Engineering, 
2004. Proceedings. 11th Working Conference on. 
IEEE, Delft, Netherlands, 2004, pp. 80-89. 

[14] (2014,Oct.)sdlc.ws.[Online].  
http://www.sdlc.ws/category/models/ 

[15] Goran Mustapic, et. al. "Influences between Software 

Architecture and its Environment in Industrial 
Systems – a Case Study," MRTC Technical Report, 
http://www.idt.mdh.se, 2004. 

 

http://en.wikibooks.org/wiki/Introduction_to_Softw
http://en.wikibooks.org/wiki/Introduction_to_Softw
http://www.sdlc.ws/category/models/
http://www.sdlc.ws/category/models/

