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ABSTRACT: The process capability index (PCI),Cpk, is commonly used in most of the manufacturing industries to measure 

process capability. An essential assumption while using Cpk is that the process should follow- a normal distribution. However, 

this may not be possible in certain  cases; so the  underlying process will follow non-normal distribution. For this reason usage 

of PCI based on non-normal distributions are gaining attention for researchers; and  useful approach is to use the quantiles 

method. Traditionally, use of Clements method is preferred, whereas the application of Pearn and Chen method has limited 

usage. This paper aims to evaluate the Cpk for Birnbaum-Saunders (BS) distribution. Moreover, bootstrap confidence intervals 

for newly proposed index using Pearn and Chen method are also discussed. Three bootstrap confidence intervals: standard, 

percentile and biased corrected are compared based on average width and coverage probability. 

 
Keywords: Birnbaum-Saunders distribution, Non-parametric confidence intervals, Process Capability Index, Pearn and Chen method. 

 

1.INTRODUCTION 

One of the most important applications of statistical tool in 

manufacturing industries is to quantify process performance 

and method used for this purpose is process capability indices 

(PCIs). Among numerous PCI's, the most applicable index is 

Cpk [1-3]. After the development and application of these 

indices in industry, the primary focus of statisticians and 

other quality researchers has been on point estimation 

followed by the construction of confidence intervals for these 

indices[4]. Even the point estimator is a useful measure but 

confidence interval more helpful to think about the range of 

parameter of interest. [3]. As the PCIs are random variables 

and follow certain probability distributions; so confidence 

intervals plays a vital role for their correct interpretation [5]. 

The construction of confidence limits for PCI was started by 

[6]. Since then many techniques were developed to construct 

confidence limits for the PCIs. In the outset, most of the 

confidence intervals for the PCIs were constructed for a 

normally distributed process. But later on, the effort was 

diverted to develop estimation techniques those are free from 

the distributional assumptions because many processes are 

skewed or are heavy-tailed in practice. Recently efforts were 

made to construct confidence limits for PCIs and study their 

behaviors when the underlying process is non-normal. For 

this purpose a non-parametric statistical method called 

bootstrapping introduced by [7] is frequently used. The main 

attraction for the application of this approach is that it does 

not require the assumption of normality for constructing the 

confidence limits.  

Birnbaum and Saunders [8] introduced the two parameters 

BS-distribution to model the physical behavior of fatigue 

crack growth under cyclic loading. If x ~ BS     , then 

probability density function    and the cumulative 

distribution function    are given below. 
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Where γ(>0) is the shape parameter and β>0 represents the 

scale parameter. The ϕ(.) is the standard normal CDF. The 

BS-distribution is unimodal, asymmetric and useful for 

describing skewed data. Nowadays, this distribution is 

frequently applied in almost all research areas due to its good 

properties [9]. In recent years, several authors [9-14] used the 

BS-distribution for quality related studies. Although the BS-

distribution has frequently been used in many industrial 

processes, but its application to study the process capability 

index (Cpk) and its bootstrap confidence intervals are not 

common.  

By exploring latest literature, it was found that many authors 

addressed the non-normality issues for different PCIs using 

different approaches [15-18]. There are five major 

approaches to the development of PCI for non-normal 

process [9]. Among these Clements method is mostly used, 

which uses the process quintiles [19]. The basic idea of 

Clements is to use the normal distribution property in which 

PCI is intended to yield only 0.27% of non-conforming 

products. In the aforementioned approach the variability (6σ) 

is substituted with q0.9985-q0.00135. The quantities, q0.9985 and 

q0.00135 are the 99.865
th
 and 0.135

th
 quantiles respectively. The 

new development in Clements approach is just to calculate 

one value i.e.                    ⁄   instead of estimating 

two 3σ. 

If a random variable X is normally distributed, i.e.X~N(μ,σ), 

then for given upper and lower specification limit the index 

Cpk is defined as 
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According to [4], the above index for non-normal process is 

defined as  
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 (         )

           
 
            

           
]        

Where      is the    quantile of the non-normal process i.e. 

           and            ,        and    
       . In this modified index, the center of the process is 

based on median because it considers a robust measure for 

skewed distribution. 

Recently [9] introduced the BS-distribution in process 

capability related studies. They used the simulation approach 

to evaluate the performance of the proposed methodology. 

Authors of [9] have used BS-distribution to study the index 

Cp.  

There are few published articles where construction of 

bootstrap confidence interval for      is applied to study the 

quality of industrial process using BS-distribution. This study 

is going to extend the usage of BS-distribution in 

construction of bootstrap confidence interval for    .  

Thus, in this work, the main goal is to propose and develop 

the bootstrap confidence intervals using Pearn and Chen [4] 

method for CNPK when the quality of interest follows BS- 

distribution. In the upcoming sections; relevant terminologies 

are introduced to describe PCI CNPK and their bootstrap 

confidence intervals for BS-distribution. Then, Monte-Carlo 

simulation study is presented to demonstrate the above 

methodology in the next section. Finally, important 

conclusions have been drawn in the last section.  

  

2.MATERIAL AND METHODS 

This section explains the PCI,    , when data follows a BS-

distribution. The quantile function of BS-distribution given in 

Eq.(1) is defined as  
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Where       and      is the q
th

 quantile of the standard 

normal distribution. Since           , so   is the median of 

the BS distribution. For the implementation of proposed 

index, the maximum likelihood (ML) estimator of shape and 

scale parameters using the BS-distribution are required. 

Using the log-likelihood function and its derivation with 

respect of      , the ML estimator of the shape parameter is 

given as  
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    is the sample arithmetic mean and 
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is the sample harmonic mean. According 

to [8], the MLE of   denoted by  ̂  can be obtained as the 

unique positive root of the equation 
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Since (7) is a non-linear equation in  , an iterative procedure 

has been used to compute  ̂. Using the invariance property of 

ML estimator, the ML estimator of     
   is defined as  
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Where      ,  ̂ and       are the 0.135
th

, 50
th

 and 99.865
th
 

quantiles of BS distribution respectively for specified shape 

and scale parameters.  

2.1 The Method of Bootstrap: 

The current study takes into account the construction of 

confidence intervals of the index,     
   using three bootstrap 

techniques i.e. standard, percentile and bias corrected 

percentile, which is explained in this section.  

Let              be independent and identically 

distributed   random variables of interest. Then following 

steps are involved to explain the bootstrap procedure.  

1. A bootstrap sample of size    is obtained from 

original sample by putting   ⁄  as mass at each point of X, 

and is denoted by   
    

    
    

 .  

2. Let   
  where       be the m

th
 bootstrap 

sample, then m
th

 bootstrap estimator of     
   is computed as  
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Where  ̂  is the m
th

 estimator of parameter  . 

Since there are total    resamples. From these re-samples we 

calculate      values of  ̂   
   . Each of these would be 

estimate of     
  . The arrangement of the entire collection 

from smallest to largest, would constitute an empirical 

bootstrap distribution of  ̂   
  .  

In this study,        is assumed for bootstrap resamples. 

2.1.1 Standard Bootstrap (SB) Confidence  Interval: 

From        bootstrap estimates of  ̂   
   , calculate the 

sample average and standard deviation as  
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Thus the SB           confidence interval is  
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quantiles of the 

standard normal distribution.  

2.1.2 Percentile Bootstrap (PB) Confidence  Interval:  

From the ordered collection of  ̂   
      , choose    (
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as the           confidence interval of     . For a     

confidence interval with        

is     ( ̂   
   

    
       ̂   

   
     

) 

2.1.3 Bias-Corrected Percentile Bootstrap  (BCPB) 

confidence Interval: 

 

Table 1: The estimated coverage probabilities and average widths of a 95% bootstrap confidence  intervals of     for Birnbaum 

Saunders Distribution with     

n   
true

NpkC  

Average widths Coverage probabilities 

SB PB BCPB SB PB BCPB 

10 0.2500 1.2484 1.9419 1.8917 1.3858 0.9620 0.8126 0.8954 

15 0.2500 1.2484 1.3428 1.3221 1.0854 0.9478 0.8516 0.9124 

20 0.2500 1.2484 1.0725 1.0606 0.9167 0.9500 0.8796 0.9260 

25 0.2500 1.2484 0.9185 0.9094 0.8113 0.9468 0.8922 0.9288 

30 0.2500 1.2484 0.8118 0.8049 0.7325 0.9494 0.9048 0.9354 

35 0.2500 1.2484 0.7390 0.7334 0.6765 0.9432 0.8998 0.9288 

40 0.2500 1.2484 0.6789 0.6735 0.6288 0.9448 0.9108 0.9326 

10 0.5000 0.5333 1.0084 0.9813 0.7114 0.9584 0.8082 0.8936 

15 0.5000 0.5333 0.6981 0.6864 0.5585 0.9454 0.8494 0.9120 

20 0.5000 0.5333 0.5575 0.5506 0.4723 0.9492 0.8774 0.9266 

25 0.5000 0.5333 0.4773 0.4720 0.4183 0.9466 0.8902 0.9274 

30 0.5000 0.5333 0.4215 0.4175 0.3777 0.9490 0.9082 0.9344 

35 0.5000 0.5333 0.3836 0.3804 0.3491 0.9430 0.8984 0.9282 

40 0.5000 0.5333 0.3523 0.3492 0.3245 0.9448 0.9096 0.9322 

10 0.7500 0.2953 0.6770 0.6564 0.4618 0.9612 0.8024 0.8920 

15 0.7500 0.2953 0.4626 0.4535 0.3604 0.9504 0.8466 0.9104 

20 0.7500 0.2953 0.3661 0.3608 0.3035 0.9528 0.8736 0.9248 

25 0.7500 0.2953 0.3117 0.3077 0.2682 0.9506 0.8872 0.9286 

30 0.7500 0.2953 0.2740 0.2709 0.2417 0.9512 0.8992 0.9348 

35 0.7500 0.2953 0.2487 0.2462 0.2233 0.9462 0.8970 0.9278 

40 0.7500 0.2953 0.2277 0.2254 0.2072 0.9476 0.9074 0.9318 

10 1.0000 0.1849 0.4981 0.4810 0.3265 0.9686 0.7944 0.8900 

15 1.0000 0.1849 0.3332 0.3257 0.2520 0.9574 0.8440 0.9100 

20 1.0000 0.1849 0.2603 0.2559 0.2108 0.9600 0.8704 0.9226 

25 1.0000 0.1849 0.2198 0.2166 0.1856 0.9550 0.8852 0.9288 

30 1.0000 0.1849 0.1920 0.1895 0.1667 0.9536 0.8972 0.9338 

35 1.0000 0.1849 0.1737 0.1717 0.1538 0.9510 0.8954 0.9284 

40 1.0000 0.1849 0.1584 0.1566 0.1424 0.9532 0.9062 0.9320 

10 1.2500 0.1255 0.3850 0.3702 0.2427 0.9786 0.7896 0.8894 

15 1.2500 0.1255 0.2514 0.2451 0.1850 0.9642 0.8396 0.9090 

20 1.2500 0.1255 0.1937 0.1901 0.1536 0.9648 0.8660 0.9214 

25 1.2500 0.1255 0.1623 0.1596 0.1347 0.9594 0.8842 0.9272 

30 1.2500 0.1255 0.1408 0.1388 0.1206 0.9586 0.8964 0.9326 

35 1.2500 0.1255 0.1269 0.1254 0.1111 0.9548 0.8930 0.9274 

40 1.2500 0.1255 0.1154 0.1140 0.1027 0.9566 0.9058 0.9314 

10 1.5000 0.0903 0.3077 0.2945 0.1871 0.9848 0.7852 0.8864 

15 1.5000 0.0903 0.1961 0.1906 0.1409 0.9734 0.8362 0.9088 

20 1.5000 0.0903 0.1491 0.1460 0.1162 0.9704 0.8644 0.9216 

25 1.5000 0.0903 0.1239 0.1218 0.1015 0.9638 0.8822 0.9276 

30 1.5000 0.0903 0.1070 0.1054 0.0906 0.9620 0.8942 0.9324 

35 1.5000 0.0903 0.0962 0.0949 0.0834 0.9582 0.8918 0.9280 

40 1.5000 0.0903 0.0871 0.0860 0.0769 0.9610 0.9044 0.9316 
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Figure 1. Comparison of average width of  ̂   
   using SB,PB and BCPB method using different sample sizes and shape parameter. 
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Figure 2. Comparison of coverage probabilities  of  ̂   

   using SB,PB and BCPB method using  different sample sizes and shape 

parameter. 

This method corrects the potential bias. Bias is generated 

because the bootstrap distribution is based on a sample from 

the complete bootstrap distribution and may be shifted higher 

or lower that would be expected. The calculation of this 

method is based on the following steps.  

i. Using the (ordered) distribution of  ̂   
      , compute the 

probability  

     ( ̂   
     ̂   

  ) 

ii. Let   and     represents the cumulative and inverse 

cumulative distribution functions of standard normal 

variable  , then calculate  

           
iii. The percentiles of the ordered distribution of  ̂   

  is 

obtained as  

    (      
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    (        
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Finally the BCPB confidence interval is given as  
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3.RESULTS AND DISCUSSION  
This section evaluates the performance of the three non-

parametric confidence intervals i.e. SB, PB and BCPB. 

Different data sets are generated using the PDF of BS-

distribution given in Eq (1) with scale parameter,      and 

different shape parameter, 

                                     For each 

combination of scale and shape parameter, a single sample of 
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size                            was drawn. Then 

       bootstrap resample were drawn from single 

samples of same sizes to estimate the coverage probabilities 

and average width. The 95% bootstrap confidence limits and 

their coverage probabilities were constructed by each of the 

three methods for index     . The complete simulations 

were run using the R-software. Table 1 exhibits the average 

width and coverage probabilities of three bootstrap methods. 

It is observed that estimated coverage probabilities of both 

SB and BCPB tend to increase towards nominal confidence 

levels for increased sample size. Same trend is observed in 

case of PB but with a slower rate. Table 1 also shows that 

     had a greater coverage probabilities and large average 

widths as compare to the other two intervals. The coverage 

probabilities show the following order           . 

While in case of average width following order is 

observed           . 

The average widths of all confidence intervals reduce by 

increasing sample sizes. The performance of BCBP method is 

better as compared to the other two methods. Figure 1 is the 

graphical representation of average widths of three 

confidence intervals for different sample sizes as reported in 

Table 1. It is observed that smaller sample sizes have larger 

width. The width decreases rapidly as the sample size 

increases for all three methods. Sample size affects the 

interval’s width in all cases. It can be observed that the 

behavior of SB and PB method is almost similar and BCBP 

method performs better than those of SB and PB. Figure 2 

shows the coverage probability of each method under 

different sample sizes. The coverage probability of SB and 

PB method attain the standard nominal values when the 

sample size increases. It can be observed that the coverage 

rate ranges between 89 % to 94% for SB and BCPB except 

for PB which has lower estimate for all sample sizes.  

 

4.Conclusions 
Three bootstrap confidence intervals and their coverage 

probabilities are calculated for process capability index CNPK 

using BS-distribution. The results indicate that both shape 

parameter and sample sizes affect the width and coverage 

probabilities of confidence interval.  The width decreases as 

sample size increases. On the other hand, coverage 

probabilities reach near to nominal levels with the increase of 

sample size. Based on coverage probabilities and average 

widths BCPB method is recommended.  
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