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ABSTRACT Wireless Sensor Network (WSN) has been the base for numerous surveillance applications to monitor indoor and 

outdoor environment. Object detection and tracking play a crucial role in regards to the usefulness of those surveillance 

applications. Proper analysis of object tracking process helps in providing a comprehensive understanding of the object 

behavior. However, object and tracking is challenging due to several aspects of the moving object such as complex motion, 

complex action development over time, complex shape, and loss of information. Although most of object tracking system were 

proposed based on the intuition that the object has usually smooth motion with no unexpected changes, it is practically 

impossible. Therefore, it is important to correctly model object’s appearance representation, motion, and shape for proper 

tracking. This paper focuses on the modeling the dynamics spatiotemporal trajectory of a moving object in two dimensional 

space. A detailed theoretical modelling of efficient trajectory-based moving object tracking concept is presented in this paper. 

It provides a proper analysis of object tracking process that can helps in offering a comprehensive understanding of the object 

movement.  
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1 INTRODUCTION  

Wireless sensor networks (WSN) has been utilized in several 

domains for monitoring purposes. Currently, cities and 

buildings including houses, schools, hospitals, and shopping 

malls are monitored by different surveillance applications for 

which advanced cameras and computing stations are used [1].  

The availability of powerful computing devices and low cost 

with high quality cameras had paved the way for more 

research that has been focusing on object detection, and 

tracking; where object recognition, localization, motion 

detection, tracking, and behavior understanding are of 

concern. The measurements of the monitoring and 

observations can significantly help in accurate localization of 

the object, organization of the tracking group, classification 

of the moving object behavior [2,3]. Object detection and 

tracking mechanisms play an important role in regards to the 

effectiveness of the surveillance applications [4,5] . Object 

detection concerns identifying and localizing the emergence 

of an object in the monitoring area; while object tracking is 

the process of discovering and estimating the course of the 

moving object over a specific time period. The movement of 

the object may occur in spatial disjoint locations. Proper 

analysis of object tracking process helps in providing a 

comprehensive understanding of the object behavior. 

However, object and tracking is challenging due to several 

aspects of the moving object such as complex motion, 

complex action development over time, complex shape, and 

loss of information. Although most of object tracking system 

were proposed based on the intuition that the object has 

usually smooth motion with no unexpected changes, it is 

practically impossible. Therefore, it is important to correctly 

model object’s appearance representation, motion, and shape 

for proper tracking [6,7].  

This paper focuses on the modeling the dynamics 

spatiotemporal trajectory of a moving object in two 

dimensions (x, y). The rest of the paper is organized as 

follows: Section 2 presents the background and some of the 

common research works on object tracking. The contributions 

of this paper are presented in Sections 3-7 where the 

modelling of sensing field coverage, object location 

discovery, sensor deployment, and sensing quality are 

respectively presented. Finally, Section 8 concludes the 

research presented in this paper and suggests some future 

research directions.  

2 BACKGROUND  

Generally, in tracking applications that are based on 

surveillance cameras, the object tracking is done through 

different important steps including object representation, 

feature selection, detection, and to end with object tracking 

[8]. As the moving object can be represented as a set of 

points, it can also be represented as basic geometric shapes 

such as circle, rectangle, ellipse etc. The appearance 

representations can be combined with the geometric shape 

representation to track a moving object. Probability densities 

and active multi-view and appearance models are among the 

common object appearance representations. Feature selection 

is another important step in object tracking. Some of the 

commonly Features used in the feature selection steps 

including texture, color, gradient, edges, optical flow etc. 

Object detection mechanism in most of the tracking 

applications is required in every frame of the video, where 

point detectors, background subtraction, and segmentation are 

usually used. Once the object is detected tracking process 

would start to create the object movement path with respect 

to time according to the object location in every frame. In the 

literature, there several approaches for tracking a moving 

object; considering main principle elements such as object 

extraction, recognition, and tracking where the decisions are 

done according to the object activities. Based on the 

representation, moving object tracking is classifies into three 

classes, namely point, kernel, and Silhouette tracking 

methods [9]. In this section, some of the common approaches 

that have been the basis for further research works. 

Traditionally, Kalman Filter technique is used for point 

tracking. The research works in [10,11,12,13] were proposed 

based on Kalman Filter. They have aimed at improving the 

tracking quality and time efficiency in processing certain 

frames in the video, where points in the noisy images are 

tracked. However, their limitation is that the variables are 

distributed using Gaussian distribution and not efficient for 
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tracking in high density environment. Dual–Tree and Daub 

Complex Wavelet transform [14,15], in addition to multiple 

cues fusion-based algorithm [16], were proposed for kernel 

tracking. Although they are good in terms of directional 

selectivity and shape matching in regard to the emergence of 

disappearance of objects, nonetheless, the tracking is not 

efficient as the object detection rate is low. Also the 

assumption that the object shape and size should not be 

changed in sequential frames, make them not feasible 

practically. Research works presented in [17,18,19,20] were 

proposed for Silhouette tracking where Silhouette is extracted 

from a detected moving objects by shape matching. Although 

these solutions are less sensitive to the variations of the object 

appearance, however, in the presence of noise, features are 

affected significantly, and that a hybrid tracking with 

additional features to support silhouette tracking are needed 

in order to achieve very good tracking results. Even though 

camera-based systems provide complementary benefits, 

however, frame rate of the cameras can cause a bottleneck. 

Also, such system would not be efficient in several indoor 

and outdoor environment conditions such as fog, fire, smock, 

rain, to name a few. Therefore, the work presented in this 

paper considers the use of binary event sensor to achieve 

efficient tracking.  

3 MODELING OF THE SENSING FIELD 

COVERAGE  

For the purpose of efficient sensing coverage that satisfies the 

requirements of the monitoring applications, the modeling of 

the network can be described as follows: The sensing field 

includes m binary homogeneous sensor nodes (with ri sensing 

range and fixed R transmission range) and it is divided into 

trajectories that are formed by the intersection of the sensing 

ranges (coverage) of each sensor node as shown in Figure 1. 

Each sensor is placed at distance di from a reference point pr, 

that is di(si,  pr). The sensing field model can be described by 

(n  +  1)-tuple (n,  P0,  …,  Pn  −  1), where n is the number 

of trajectories (paths) in the sensing field, Pi denotes the 

width of the ith trajectory where 

i  =  0,  1,  2,  …,  n  −  1. Based on node deployment, 

the width of trajectories is equal for all 

i  =  0,  1,  …,  n  −  1, such that Pi  ≤  ri. The moving 

object would definitely fall in one of the trajectories. Once an 

object O is detected, the sensor nodes notifies the base station 

directly; thus, data aggregation and routing are not assumed. 

Having n trajectories and m sensor nodes with fixed ri 

sensing range placed diaway from a reference point pr, then, 

the following property holds: Pi  <  ri  <  di(si,  pr).  

4 LOCATION DISCOVERY  

The object detection model utilized in this research is based 

on the sensing accuracy probability described in[21], which is 

as follows:  

The sensing probability to accurately detect an object is:  

(1) P(Si)  =  λδ
  −  (K*d(s

i
,  p))a

  

where:  

 λ is the detection accuracy parameter that indicates 

the maximum probability with which the object O is certainly 

detected by sensor node i, such that 0  <  λ  ≤  1; that is, 

when d(i,  p)  =  0, then λ  =  1.  

 δ and K indicate the vertical and the horizontal 

location parameters respectively, where δ  >  1 and K  >  0 

. A probability distribution can be formed based on reference 

point (a point that is used to define a location of another 

point) that is can be defined by (dr(si,  pr),   Pr(Si)). It means 

that when an object o appears at dr(si,  pr) distance away 

from a sensor node i, the probability with which the object is 

detected is Pr(Si). Hence, making Kdr(si,  pr)  =  1, would 

result in Pr(Si)  =  λδ
  −  1

, which help in selecting a reference 

point (dr(si,  pr),   Pr(Si)).by determining the location 

parameters according to Equations (2) and (3) below:  

(2) δ  =  λ(Pr(Si))
  −  1

  

(3) K  =  dr(si,  pr)
  −  1

  

 α is a positive parameter (α  >  0) that indicates the 

sharp (or smooth) decrease of the sensing probability, from λ 

to 0, with respect to d(si,  p). If it is required to designate that 

at specified distance d
’
(si,  p), the accuracy sensing 

probability is P
’
(Si), theα should be set as follows:  

(4) α  =  logdK*d
’
(i,  p)logδ((λ)/(P

’
(Si)))  

where d
’
(si,  p) must be greater than dr(si,  pr), and P

’
(Si) 

must be less than Pr(Si), and vice versa.  

As mention earlier, for a sensing accuracy model that is based 

on a fixed radius, a sensor node would definitely sense any 

object appears within its sensing radius, such that:  

(5) P(Si)  =  ⎧⎨⎩ 1,    d(si,  p)  <  r        0,    

otherwise   

Sensing field (SF) is coverage of a WSN at any point i (pi) is 

defined as the probability of a sensor detecting the object at 

that point.  

(6) SF(pi)  =  1  −  ∏(1  −  P(Si))  

where SF(pi) is the sensing coverage at specific location (pi), 

and P(Si) is the sensing probability of sensor node i at pi of 

the sensing field.  

Sensing field coverage Cov(SF,   pi) is that the sensing field 

SF is the efficient sensing measures at a at specific location 

(pi) from all sensor nodes in the field. If there are n sensor 

nodes, the total contribution of detection functions of each 

node, which reflects the coverage of sensing field at point 

pi,   is:  

(7) Cov(SF,   pi)  =  ∑1
n
(si,   pi)  

 

 
Figure 1 Modeling of the Sensing Field Coverage  

5 SENSOR PLACEMENT  

An optimal sensing coverage with respect to the sensor 

position within the sensing field SF can be defined such that a 

maximum sensing coverage and maximum detection 

probability are obtained.  

Let the posItion of a sensor si be at distance di from the angle 

θ of a reference point pr, then for SF coverage model 
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(n,  P0,  …,  Pn  −  1) with ri representing the sensing range 

of si positioned within dr, and that 

(1)/(2)(Pi  +  ri)  ≤  ri  ≤  √(2)(∑j  =  0
i
Pj),   the optimal 

sensing coverage would be achieved if location li of si with 

respect to the distance of the reference point di(si,  pr), for all 

i  =  0,  1,  …,  n  −  1, meet the following condition:  

(8) li  =  ⎧⎨⎩ √(((Pi)
2  −  (ri)

2
)/(3))  ,   

((Pi)/(2))  ≤  ri  ≤  Pi        √((Pi)
2  −  (ri)

2
)  ,   

(Pi)  <  ri  ≤  √(2)(Pi)   

Let si be positioned at point (0,  di), where di  ≥  0. 

Considering the trajectory Pi depicted in Figure 1, Proving 

Lemma (1) can be done by determining the position of a 

sensor si that can maximize the sensing coverage.  

 
Figure 2 Optimal sensor position in the trajectory Pi 

 

Assume there are two circles represented by equations (9) 

and (10) as follows:  

(9) x
2  +  y

2  =  Pi
2
  

(10) x
2  +  (y  −  di)

2  =  ri
2
  

Where the first one that includes Pi, and the sesond one 

includes the semicircle of the sensing coverage. Solving for x 

in (9) gives: 

(11) x
2  =  Pi

2  −  y
2
  

By subsituting (11) in (10), it will give: 

(12) yi(di)  =  ((Pi)
2  +  (di)

2  −  (ri)
2
)  ⁄  2di  

Solving for Pi,   yi(di) axis would be resulted of the 

intersection point (xi(di),  yi(di)) of the two circles.  

yi(di) can also be obtained by subtracting the two circles 

equations while expanding to achive a linear equation for 

xi(di) and yi0(di). The linear equation is the equation of the 

line that passes through the intersection points when the two 

circles intersect. Let f(di) represents shaded area shown in 

Figure 2, such that: 

(13) f(di)  =  ∫i
y
i
(d

i
)
fi(y  −  di) dy  +  ∫yi(di)

P
ifPi(y) dy  

(14) f(di)  =  ∫  −  di
y
i
(d

i
)  −  d

ifi(y) dy  +  ∫yi(di)
P

ifPi(y) dy  

While fi(y) and fPi(y) are both contineous functions, their 

antiderivatives can be Fi(y) and FPi(y) respectively; therefore, 

f(di) can be written as:  

(15) 

f(di)  =  Fi(yi(di)  −  di)  −  Fi(  −  di)  +  FPi(P)  −  FPi(

yi(di))  

The first derivative of f(di)represents the slope of the tangent 

line at the function. It can also be written as:  

(16) 

f’(di)  =  fi(yi(di)  −  di)((d(yi(di))/(ddi)  −  1)  +  fi(  −  di

)  −  fPi(yi(di))((d(yi(di))/(ddi))  

(17) f’(di)  =  fi(  −  di)  −  fi(yi(di)  −  di)  

Equation (16) holds as 

xi(di)  =  fPi(yi(di))  =  fi(yi(di)  −  di).  

It is obvious that f’(di)  =  0 implies that 

f’(di)  =  √(((Pi)
2  −  (ri)

2
)  ⁄  3) when 

(Pi)/(2)  ≤  ri  ≤  Pi, or √((Pi)
2  −  (ri)

2
) when 

Pi  <  ri  ≤  √(2)Pi. Thus, Lemma (1) can be further proven 

by the the second derivative of f(di), where f’’(di)  <  0.  

6 Sensing Quality  

For a sensing field model (n,  P0,  …,  Pn  −  1), the sensing 

coverage of a sensor siwith a sensing range ri(such that 

(1)/(2)Pi  ≤  ri  ≤  √(2)(∑j  =  0
i
Pj),   for 

i  =  0,  1,  …,  n  −  1),   that is beyond the width 

Piwhere object O moves can be minimized if the optimal 

placement of si at distance di away from the reference point pr 

meets the following condition:  

(18) 

di  =  √(((∑j  =  0
i  −  1

Pj)
2  +  (∑j  =  0

i
Pj)

2  −  2(ri)
2
)  ⁄  2)  

The shaded area in Figure 1 represented by f(di), where 

i  ≥  1, can be given as follows:  

(19) f(di) =  ∫y1(di)
d
i
  +  r

ifi(y  −  di) dy  −  ∫y1(di)
∑

j  =  0
iP

jfPi(y) 

dy  +  ∫di  −  r
y
0
(d

i
)
fi(y  −  di) dy       

  +  ∫y0(di)
∑

j  =  0
i  −  1P

fPi  −  i(y) dy  

(20) f(di)   =   ∫y1(di)  −  di
r
ifi(y) dy  −  ∫y1(di)

∑
j  =  0

iP
jfPi(y) 

dy  +  ∫  −  ri
y
0
(d

i
)
fi(y) dy         +  ∫y0(di)

∑
j  =  0

i  −  1P
jfPi  −  i(y) dy  

where  

(21) fi(y)  =  √((ri)
2  −  (y)

2
)  

(22) fPi  −  1(y)  =  √((∑j  =  0
i  −  1

Pj)
2  −  (y)

2
)  

(23) y0(di)  =  ((∑j  =  0
i  −  1

Pj)
2  +  (di)

2  −  (ri)
2
)/(2di)  

(24) y1(di)  =  ((∑j  =  0
i
Pj)

2  +  (di)
2  −  (ri)

2
)/(2di)  

Let the antiderivatives of fi(y) , fPi(y), and fPi  −  1(y) 

represented by Fi(y), FPi(y), and FPi  −  1(y) respectively; 

hence, f(Pi) can be expressed as follows:  

(25) f(di) 

=  Fi(ri)  −  Fi(y1(di)  −  di)  −  FPi(∑j  =  0
i
Pj)  +  Fi(y0(di)

  −  di)       

  −  Fi(  −  ri)  +  FPi  −  1(∑j  =  0
i  −  1

Pj)  +  FPi(y1(di))  −

  FPi  −  1((y1(di))  

The first derivative of f(di) is:  

(26) f`(di)   =   

(dFi(ri))/(d(ri))(d(ri))/(d(di))  −  (dFi(y1(di)  −  di))/(d(y1(di)

  −  di))( 

d(y1(di)  −  di))/(d(di))  −  (dFPi(∑j  =  0
i
Pj))/(d(∑j  =  0

i
Pj))(d(

∑j  =  0
i
Pj))/(d(di))       

  −  (dFi(  −  ri))/(d(  −  ri))(d(  −  ri))/(d(di))  +  (dFPi  −

  1(∑j  =  0
i  −  1

Pj))/(d(∑j  =  0
i  −  1

Pj))(d(∑j  =  0
i  −  1

Pj))/(d(di))       

  +  (dFPi(y1(di)  −  di))/(d(y1(di))(dy1(di))/(d(di))  −  (dFPi 

−  1(y0(di)  −  di))/(d(y0(di))(dy0(di))/(d(di))  

(27) f`(di)   =   (fPi(y1(di)  −  fi(y1(di)  −  di) 

(dy1(di))/(d(di))  +  fi(y0(di)  −  di)         −  fPi  −  1(y0(di))) 

(dy0(di))/(d(di))  +  fi(y1(di)  −  di)  −  fi(y0(di)  −  di)  

(28) f`(di)  =  fi(y1(di)  −  di)  −  fi(y0(di)  −  di)  

It is clear that Equation (28) holds as  

(29) fi(y1(di)  −  di)  =  fPi(y1(di))  =  x2(di)  

and  

(30) fi(y0(di)  −  di)  =  fPi  −  1(y0(di))  =  x1(di)  

Therefore, Lemma 2 is proven as f`(di)  =  0 results in that  

di  =  √(((∑j  =  0
i  −  1

Pj)
2  +  (∑j  =  0

i
Pj)

2  −  2(ri)
2
)  ⁄  2) .  

For a sensing field model (n,  P0,  …,  Pn  −  1), with a fixed 

trajectory width Pi and a fixed distance di of sensor si position 

from the reference point pr, having the sensor sensing range 
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ri, the number of sensors m’ that efficiently sense the object 

O in Pi is:  

(31)m’  =  ⌈(π  ⁄  4)/(2cos
  −  1

(((di)
2  +  (∑j  =  0

i
Pj)

2  −  (r

)
2
)/(2di(∑j  =  0

i
Pj)))⌉       for i  =  0,  1,  …,  n  −  1  

Assume that there are two neighboring sensors positioned in 

the trajectory Pi as shown in Figure 3.  

The maximum sensing coverage in the trajectory Pi can be 

achieved if there is no gap between coverage areas of those 

sensors. The maximum allowed angle θ of the two 

neighboring, which maximize the sensing coverage can be 

derived using Cosine law as follows: 

(32) (ri)
2  =  (di)

2  +  (∑j  =  0
i
Pj)

2  −  2di(∑j  =  0
i
Pj)cos(θ)  

Thus,  

(33) θi  =  ((di)
2  +  (∑j  =  0

i
Pj)

2  −  (ri)
2
)/(2di(∑j  =  0

i
Pj))  

By taking that the first quadrant of unit circle, the angel at 

pr(x0,  y0) is 45
○
. Hence, the number of sensors required for 

maximizing the sensing coverage in the trajectory Pi is 

m’Pi  =  ⌈(π  ⁄  4)  ⁄  (2cos
  −  1

(((di)
2  +  (∑j  =  0

i
Pj)

2  −  (

ri)
2
)/(2di(∑j  =  0

i
Pj))))⌉ for all i  =  0,  1,  …,  n  −  1.  

 

 
 

Figure 3 Angle θ between two sensors for maximum sensing 

coverage 

7 TRACKING A MOVING OBJECT  

Having describing the maximum sensing coverage in the 

sensing field, now tracking (Tr) of an object O moving on a 

trajectory Pi is defined as measure of how well it can be 

observed by the sensors over time. Assume that an object is 

moving in the sensing field SF from a specific location at 

point p1(t0) to point p2(t1) along a curve c(t). Such movement 

can be defined as follows:  

The tracking (Tr) of object O in the sensing field during the 

period of time interval [t0,  t1] along a curve c(t) in the 

trajectory Pi is defined as:  

(34) Tr(c(t),  t0,  t1)  =  ∫t0
t
1Cov(SF,   c(t))|(dc(t))/(dt)|dt  

such that if c(ti)  =  x(ti),  y(ti), hence  

|(dc(ti))/(dt)|dt  =  √(((dx(ti))/(dt))
2  +  ((  dy(ti))/(dt))

2
)  

Assume there is a sensor si located at (xi,  yi) where is 

probability sensing function at point pi(x’i,  y’i) is defined as  

(35) P(si(xi,  yi),   

pi(x’i,  y’i))  =  (1)/(di(si,  pi))  =  (1)/(√((x’i  −  xi)
2  +  (

y’i  −  yi)
2
))  

Assume there is an object O is travelling from point p1(1,  0) 

to point p2(xi,  yi).  

If p2  =  (0,  1), then (cos πt/2, sin πt/2) would represent the 

minimum path, and the tracking over that path is 

Tr  =  (1)/(2)π.  

Making lines from the position where si is located at (xi,  yi), 

which intersect x-axis where the object is detected at 

pi(x’i,  y’i), and with angle θi, where 

0  <  θ1  <    ···  <  θi  <  θi  +  1  <    ···  <  θn  =  π

  ⁄  2. Obviously, from p1(1,  0) to p2  =  (0,  1), the 

moving object O would pass over every line orderly and one 

time only. Approximating the trajectory between the points 

pi(xi,  yi) and pi  +  1(xi,  yi) where the lines intersect, and 

making perpendicular line to the trajectory line where the 

intersection point is vi(xi,  yi), will results in having two 

angles φiand φi, respectively. It can be One can verified that 

tracking the object from pi(xi,  yi) to vi(xi,  yi) along the 

trajectory line is 

 (36) 

Tr  =  ∫0
d

i
(s

i
,  p

i
)sinφ

i(1)/(√((di(si,  pi))
2
φi  +  xi

2
))dx  =  ln(1 

+  sinφi)/(cosφi)  

where di(si,  pi) is the distance from the location of the sensor 

si to the point pi. Thus, tracking the movement from pi(xi,  yi) 

to pi  +  1(xi,  yi) will be:  

(37) Tr  =  ln(1  +  sinφi)/(cosφi)  +  (1  +  sinφi)/(cosφi)  

Note that φi  +  φi  =  θi  +  1  −  θi where the tracking path 

is minimized; and φi  =  φi means that 

di(si,  pi)=di  +  1(si,  pi  +  1), and also if n  →  ∞and that the 

stop point for the moving object is p2  =  (0,  1), hence, 

represented by the quarter circle with radius 1 and centered at 

pi  =  (0,  0), the minimum length of the trajectory from 

p1(1,  0) to p2  =  (0,  1) can be defined as 

(cos(πt  ⁄  2),  sin(πt  ⁄  2))   for 0  ≤  t  ≤  1. Therefore,  

(38) Tr   =   

∫0
1
(√(cos

2
(πt  ⁄  2)  +  sin

2
(πt  ⁄  2)))

  −  1
*√((π  ⁄  2 

cos(πt  ⁄  2))
2  +  (  −  π  ⁄  2 sin(πt  ⁄  2))

2
) dt       

  =  (1)/(2)π  

 

 
Figure 4 Tracking object moving from p1(xi,  yi) to p2(xi,  yi)  
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8 CONCLUSION AND FUTURE WORK  

This paper considers the utilization of Wireless Sensor 

Networks (WSNs) for monitoring a moving object and how 

efficient a tracking of an object can be. The research in this 

paper presented a theoretical modelling of an efficient 

moving object tracking based on the trajectory of the object 

movement. A thorough analysis of object tracking process 

has been presented where tracking is defined as measure of 

how well it can be observed by the sensors over time, while 

considering:  

 Sensing field coverage where the monitoring area is 

divided into trajectories that are formed by the intersection 

of the sensing ranges (coverage) of each sensor node.  

 Object location discovery according to the probability of 

the sensing accuracy of a sensor.  

 Sensor deployment where maximum sensing coverage and 

maximum detection probability can be obtained.  

 Sensing quality where the number of sensors required for 

maximizing the sensing coverage in the trajectory is 

computed.  

A comprehensive understanding of tracking the object 

movement can be realized based on the theoretical concept 

provided. In relation to that, future work would go on in 

several directions:  

 The exploration of some concept such as Scalar field, 

Vector field, Partial derivatives, Schwarz’ theorem, 

Divergence, Curl, and Laplacian to acquire useful 

information such as position, direction, and velocity of the 

moving object.  

 The utilization of binary bit information for approximating 

and tracking the multiple moving objects using binary 

wireless sensor network, where a base station can estimate 

the object location and movement in a region that includes 

the sensors detecting the object, by using the bit vector of 

the reported sensed data.  

 The implementation of the presented modelling in 

simulated environment to validate the efficiency of the 

applications that would utilize the concept, where 

clustering communication paradigm is used for reporting 

the sensed data to a base station.  
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