
Sci. Int.(Lahore),29(2),337-341,2017 ISSN: 1013-5316; CODEN: SINTE 8 337

March-April

A PROPOSED MODEL FOR IMPROVEMENT IN BUGS MANIFESTATION
PROCESS

*Mahreen Shahid
1, Muhammad Haris Abid

2

1University of Agriculture, Faisalabad, Pakistan
2Shiblee College, Faisalabad, Pakistan

*Corresponding Author’s email: mahreenshahid55@gmail.com

ABSTRACT: Currently bugs manifestation process is being utilized in detection of different types of bugs. These bugs do not

show up easily at development time and manifest themselves only as operational failure. There are many areas in bugs’

manifestation process which can be improved or optimized. The purpose of this research is to analyze bugs manifestation

process to find flaws. Two main processes areas are selected after analysis of bugs’ manifestation process in the light of the

flaws occurred. These processes are Development and Maintenance. In this research work I proposed a model to stop these

bugs before and after development process to meet customer requirements. The suggested model will be efficient and more

reliable compared to the existing one.

Keywords: manifestation, processes, bugs, exploratory testing, regression testing, empirical, programming activity.

1. INTRODUCTION:
Bugs free software can only improve software quality and
development processes. Scientists, crosswise over years,
broke down bugs from various perspectives to enhance
software quality and its processes. Many bugs efficiently
cause a similar disappointment on a given stage (succession
of) input(s). Alternately, there is a non-unimportant
arrangement of bugs that cause a disappointment relying
upon the condition of the execution of code, showing up as
non-deterministic or transient, in which the disappointment
does not happen unless the environment is in a certain state
[4]. The method of delivering these systems is simplified in
pre-release and post-release phases. The pre-release part of
delivering a system includes the event and maintaining
activities performed at Transaction of Software Engineering.
The post-release part includes activities in test and production
environments of the organization owning the systems [6].
Software applications are commonly built by integration
legacy and outsider components. A generally known
improvement regularly discovered in such frameworks is
code maturing. [1]. A major drawback in bugs detection
techniques is that they are not maintaining their performance
once transferred from one system to a different. This lack of
exchangeability is as a result of every software package tends
to own specific options. These options stop from context
factors together with application domain, development
setting, language, development team etc [5]. Research and
studies shows that the importance of characteristic the
environment as security cause of bug publicity[2,4,7].
Memory [9], concurrency [8], and resource management [3]
are also highlighting the execution environment of software
bugs.
This research work includes the following sections: Sections
2 contain material and methods in terms of bugs
manifestation process in Software Development Life Cycle
(SDLC). Characteristics of Bug Manifestation Process
discussed in Section. 3. Section 4 system model and
methodology of Bugs Manifestation Process. This paper
concluded by finding, conclusion and future work (Section 5,
6) however list of references followed at the end of this
research work.

2. MATERIAL AND METHODS
The major concern of this research is to explain and explore
bugs manifestation process in software development life
cycle (SDLC). Bugs are encountered during verification

activity and normalized also by programmers. Timely
detection and correction of bug is objective to quality and
reliability of software. In other case bugs may be converted
into faults, errors or defects. Software cost can grow up to
100% if bugs transferred to customer at deployment phase.
Therefore, we have explained current bug manifestation
process and its pros and cons. Furthermore, we have included
two testing techniques i.e. exploratory and regression to
improve reliability and quality of software. Exploratory
testing is used to find errors during development process and
to stop operational failures. Regression testing is applied only
if programmer finds bugs after development, regression
testing helps to maintain the process. Additionally, both
processes are empirically compared by applying them on
some programming activity. Test cases are designed to
explore the positive or negative impact of suggested
approaches.
3. CHARACTERISTICS OF BUG MANIFESTATION

PROCESS
The arrangement of starting conditions ("triggers")
considered in the examination. Triggers are seen as the
conditions essential for the bug to be established and
increased up to the client interface as dissatisfaction. We first
present a crucial framework model incorporating the
considered triggers.

Figure 1: Bugs Manifestation Process

338 ISSN: 1013-5316; CODEN: SINTE 8 Sci. Int.(Lahore),29(2),337-341,2017

4. SYSTEM MODEL
We consider the application and the central external
substances with a potential impact, specifically the customer
and the execution environment. We expect an application as
made out of strategies and/or strings talking with each other
to accomplish the proposed limit, with correspondence
channels executed by either an around the world (e.g., shared
memory) or an area model (e.g., message exchange). The
state of the application fuses the states of neighboring
methodology (and/or strings), and of correspondence
channels among them. An area state is the course of action of
data (e.g., set away as variables in memory or reports) which
the systems/strings can take a shot at (i.e., read from/create
too).
After analyzing above programming activity we applied same
activities by adopting a new model which contained
exploratory and regression testing. We have designed some
test cases to evaluate our proposed model. Furthermore, we
have developed a regression model to justify our results
empirically.

Figure 2: Proposed Model

Figure 3: Flow Chart For Proposed Model

After deeply observing of the bug’s manifestation process we
have introduced two new phase in it. The first source of bugs
is formal testing phase that includes exploratory testing
during development phase, secondly, if bugs delivered to
customer than regression testing will be applied at
maintenance phase. Detecting bugs earlier leads not solely to
low-cost and simplify, however, additionally early detection
of bugs will play a significant role within the reliability of
systems.

Empirically comparison is made on both processes (before
including exploratory and regression testing and after
including) by applying them on some programming activity.
We developed hypothesis (H1: Inclusion of Exploratory and
Regression testing makes Bugs manifestation process more
efficient and reliable and HA: Inclusion of Exploratory and
Regression testing does not make Bugs manifestation process
more efficient and reliable). On the basis of Hypothesis
results and conclusion is made. We also design a regression
model to observe the impact of Exploratory and Regression
testing on the reliability and efficiency of Bugs manifestation
process. Regression Model is

Re = α+β1 (EXPT) + β2 (RET) +ε

Ef = α+β1 (EXPT) + β2 (RET) +ε

(Where Re is Reliability, Ef is Efficiency, EXPT is
Exploratory Testing and RET is Regression Testing).
The suggested process and model will be efficient and more
reliable in compare to existing one.

4.1 METHODOLOGY
Bugs manifestation process is used to explore bugs early in
software development process (SDLC) to avoid time

Sci. Int.(Lahore),29(2),337-341,2017 ISSN: 1013-5316; CODEN: SINTE 8 339

March-April

consumption and improvement in the quality of the end
product to satisfy customer. Impact of bugs grows if it is not
detected during debugging or as early as the product is
deployed or delivered to the customer. The intensity of bug
becomes severe if it travels to end user. We have discussed
bugs manifestation process and its current issues in chapter 3.
In this chapter, firstly we presented bugs manifestation
process’s working result and its issues. Secondly, we
presented results for exploratory and regression testing
individually in SDLC. Last but not least we have presented
results for our suggested model which we generated by
including exploratory testing during traditional debugging
phase and regression testing included after deployment when
end user wants maintenance and Update in his / her product.
At the end on the basis of results we have justified designed
hypothesis i.e. (exploratory and regression testing improves
software quality) by using regression equation.

Figure 4: Adding Task In Test Studio For Exploratory Testing

Following figure represents the exploratory testing. As results
are showing exploratory is 43% effective and in remaining
cases it partially or tally failed.

Figure 5: Test Results Of Exploratory Testing

Figure 7 shows that bugs / defects grow with a continuous
maintenance/update of software. So we can say that
regression testing is said to be partially passed.

5. RESULTS OF PROPOSED MODEL

Figure 6: Regression Testing

than regression testing will be applied at maintenance phase.
Detecting bugs earlier leads not solely to low-cost and

Figure 7: Regression Testing Results

simple, however, additionally early detection of bugs will
play a significant role within the reliability of systems.
Following figure shows the results of proposed model. Gray
Line shows the result for exploratory testing which means it
is not performing well and required a lot of time. Similarly,
Red line shows regression testing statistics which means it is
also running in static behavior. The Blue line indicates results
of our proposed model. The blue line shows as test cases
increase the test results found less bugs and runs in average
time. It means our proposed model is showing positive
results. Hence we can say that with including exploratory and
regression testing in SDLC bugs occurrence and
manifestation can be reduced.
After a deep observation of bug’s manifestation process we
have introduced two new phase in it. First source of bugs is a
formal testing phase that includes exploratory testing during
development phase, secondly if bugs delivered to customer

340 ISSN: 1013-5316; CODEN: SINTE 8 Sci. Int.(Lahore),29(2),337-341,2017

0

5

10

15

0 0 1 1 1 1 1 0 1 1

R
el

ia
b

il
it

y
 C

a
se

Regression Tetsing

Regression Tetsing Line Fit Plot

Reliability Case

Predicted Reliability Case

Linear (Reliability Case)

0

10

20

1 1 0 1 1 1 1 0 1 0

R
e

lia
b

ili
ty

 C
as

e

Exploratroy Testing

Exploratroy Testing Line Fit Plot

Reliability Case

Predicted Reliability Case

Figure 8: Comparison

5.1 Hypothesis
We developed hypothesis (H1: Inclusion of Exploratory and
Regression testing makes the Bugs manifestation process
more efficient and reliable and HA: Inclusion of Exploratory
and Regression testing does not make Bugs manifestation
process more efficient and reliable).
On the bases of results, we cannot reject H1. It means that
exploratory and regression testing have positive impact on
bugs manifestation process and it makes process more
efficient and reliable.
5.2 Regression Model

i. Re = α+β1 (EXPT) + β2 (RET) +ε
ii. Ef = α+β1 (EXPT) + β2 (RET) +ε

(Where Re is Reliability, Ef is Efficiency, EXPT is
Exploratory Testing and RET is Regression Testing).
We applied regression on model 1 to check the impact of
exploratory testing and regression testing on reliability. We
have 10 test cases so we encode it with 1-10 and if test case is
being then it is encoded with 1 otherwise 0. Results are
following

Table 1: Regression Statistics

Regression Statistics Values

Multiple R 0.552978412

R Square 0.305785124

Adjusted R Square 0.107438017

Standard Error 2.860387768

Observations 10

Table 2: Anova Table

ANOVA

 df SS MS F
Significance

F

Regression 2 25.2272 12.6136 1.5416 0.2787

Residual 7 57.2727 8.1818

Total 9 82.5

The result of F-test is 1.542 and it is highly significance as p
value is .278 which means that reliability is dependent on
exploratory regression testing.

Figure 9: Reliability Dependency On Regression Testing

Figure 10: Reliability Dependency On Exploratory Testing

Similarly, we applied regression on model 2 to check the

impact of exploratory and regression testing on Efficiency.

We have 10 test cases so we encode it with 1-10 and if test

case is being then it is encoded with 1 otherwise 0. Results

are following: -

TABLE 3: REGRESSION STATISTICS

Regression Statistics Values

Multiple R 0.552978412

R Square 0.305785124

Adjusted R Square 0.107438017

Standard Error 2.860387768

Observations 10

Sci. Int.(Lahore),29(2),337-341,2017 ISSN: 1013-5316; CODEN: SINTE 8 341

March-April

0

2

4

6

8

10

12

1 1 0 1 1 1 1 0 1 0

Ef
fi

ci
e

n
cy

 C
as

e

Exploratroy Testing

Exploratroy Testing Line Fit Plot

Efficiency Case

Predicted Efficiency Case

Linear (Predicted Efficiency Case)

0

2

4

6

8

10

12

0 0 1 1 1 1 1 0 1 1

Ef
fi

ci
e

n
cy

 C
as

e

Regression Tetsing

Regression Tetsing Line Fit Plot

Efficiency Case

Predicted Efficiency Case

Linear (Predicted Efficiency Case)

TABLE4: ANOVA

ANOVA

 Df SS MS F Significance F

Regression 2 25.2272 12.6136 1.3236 0.2323

Residual 7 57.2727 8.1818

 Total 9 82.5

The result of F-test is 1.3236 and it is highly significance as p
value is .2323 which means that reliability is dependent on
exploratory regression testing.

Figure 11: Efficiency Dependency On Exploratory Testing

6. CONCLUSION AND FUTURE WORK
While developing the software projects, software developers
ignore the software bugs manifestation process. These bugs
do not show up easily at development time. In this research
work, the researcher tried to analyze bugs manifestation
process to find flaws. Two main processes areas
(development and maintenance) were selected after analysis
of bugs manifestation process.
After deeply observation of bug’s manifestation process we

have introduce two new phase in existing model. First source

of bugs, i.e. formal testing phase that include exploratory

testing during development phase, secondly, if bugs delivered

to customer than regression testing will be applied at

maintenance phase. These two phases will play a significant

role within the reliability of projects and safe it towards

failure.
In future work the author will try to apply this model in
Enterprise Resource Planning (ERP) system to ensure its
usability and reliability in real scenario.

Figure 12: Efficiency Dependency On Regression Testing

REFERENCES

[1] Bovenzi, A., D. Cotroneo, R. Pietrantuono and S. Russo.
On the aging effects due to concurrency bugs: a case
study on MySQL. 2012 IEEE 23rd International
Symposium on Software Reliability Engineering, IEEE.
(2012)

[2] Chandra, S. and P. M. Chen. Whither generic recovery
from application faults? A fault study using open-source
software. Dependable Systems and Networks, 2000.
DSN 2000. Proceedings International Conference on,
IEEE. (2000)

[3] Cotroneo, D., R. Natella and R. Pietrantuono. "Predicting
aging-related bugs using software complexity metrics."
Performance Evaluation 70(3): 163-178(2013).

[4] Grottke, M., A. P. Nikora and K. S. Trivedi. An
empirical investigation of fault types in space mission
system software. 2010 IEEE/IFIP International
conference on dependable systems & networks (DSN),
IEEE. (2010)

[5] Hall, T., D. Bowes, S. Counsell, L. Moonen and A.
Yamashita. "Software fault characteristics: A synthesis
of the literature." (2015).

[6] Herzig, K., S. Just and A. Zeller. It's not a bug, it's a
feature: how misclassification impacts bug prediction.
Proceedings of the 2013 International Conference on
Software Engineering, IEEE Press. (2013)

[7] Lee, I. and R. K. Iyer. "Software dependability in the
Tandem GUARDIAN system." IEEE Transactions on
Software Engineering 21(5): 455-467(1995).

[8] Lu, S., S. Park, E. Seo and Y. Zhou. Learning from
mistakes: a comprehensive study on real world
concurrency bug characteristics. ACM Sigplan Notices,
ACM. (2008)

[9] Sullivan, M. and R. Chillarege. Software defects and
their impact on system availability: A study of field
failures in operating systems. FTCS. (1991)

