
Sci.Int.(Lahore),28(3),2767-2775,2016 ISSN 1013-5316;CODEN: SINTE 8 2767

May-June

A NATURAL LANGUAGE METAMODEL FOR GENERATING CONTROLLED
NATURAL LANGUAGE BASED REQUIREMENTS

Shabana Ramzan
1
, Imran Sarwar Bajwa

2
, Bushra Ramzan

1

1 Department of Computer Science & IT, Islamia University of Bahawalpur
2 School of Computer Science, University of Birmingham, UK

shabanaramzan@hotmail.com, i.s.bajwa@cs.bham.ac.uk

ABSTRACT.: In natural language processing, generation of formal representation such as Semantics of Business Vocabulary and Rules

(SBVR) or First-Order-Logic (FOL) from Natural Language (NL) text is an important phase. In recent years, model transformation has been

an efficient way of transforming a source to a target representation. For NL to SBVR model transformation, metamodels of both source (such

as NL) and target (such as SBVR) representations are required but currently there is no NL metamodel available. In this paper, we present a

primary version of NL metamodel that can be used to model transform NL requirements to SBVR from a restricted domain. The results of

preliminary experiments are very encouraging. The results manifest that the output of our approach can be machine processed for automatic

generation of precise and reliable software models from NL requirements.

Keywords: SBVR, Requirement Specification, Model Transformation, Transformation Rules.

I. INTRODUCTION
Requirement specification document is the key constituent

for software development. System analyst usually specifies

software requirements in natural language and inherent

ambiguity of natural language creates conflict between clients

and software developers on the interpretation of a

requirement. Our research will provide the solution to avoid

these conflicts by generating controlled natural language

based requirements. We presented an approach to transform

NL based requirements into the SBVR (Semantics of

Business Vocabulary and Business Rules) [1] standard of

OMG (Object Management Group) by using model

transformation. For NL to SBVR transformation, we require

source and target metamodels. In this paper, firstly we

present NL metamodel and then transform this metamodel

into SBVR metamodel to provide controlled representation of

requirements. SBVR based requirements are machine

processable which resolve the issue of ambiguity. SBVR

based requirements lessen the semantics changes and reduce

disasters in software industry caused by wrong

communication between user and development team.

The remaining paper has following sections, section II

presents related work, section III describes basic concepts

involved in model transformation; section IV states the model

transformation from NL to SBVR, section V illustrates the

case study and followed by experiments and results section.

The last section covers conclusions.

2. Preliminaries

Our research work presented the model transformation of

natural language metamodel to SBVR metamodel as well as

proposed natural language model.

2.1 Semantics of Business vocabulary and Rules

SBVR (Semantics of Business Vocabulary and Rules) [1] is a

standard established by object management group. If we

transform natural language requirement specification into

SBVR based requirements, we have an opportunity to easily

process these requirements by machine due to formal logic of

SBVR. Semantic models for business rules and vocabulary

are developed by metamodel, which is defined by SBVR [1].

 SBVR has two main constituents, SBVR rules and

vocabulary. The detail description of SBVR constituents is

given below.

SBVR Business Vocabulary: The main elements of SBVR

vocabulary are concepts and fact types. Business people used

SBVR vocabulary for their official writing. Concepts are of

three types, Object Types and Individual Concepts and Verb

Concepts. Common nouns of natural language text are

represented as object types or general concepts and proper

noun as individual concept. All helping verb and action verb

are classified as verb concept. A proposition, a verb or a

combination of verb and preposition is denoted as fact type

[1].

SBVR Business Rules: These rules provide guidance about

the actions taken for business and also define the structure of

business. There are two types of rules

 Definitional rules or structural rules: The setup of

organization is defined by these rules [1] e.g. It is possible

that each customer can order for more than one meal per

day.

 Behavioral rules or operative rules: The behavior of an

entity is characterized by these rules [1] e.g. It is

obligatory that each truck can transport the tools to factory.

Semantic Formulation of NL Text: SBVR rules are

semantically formulated by using logical formulations. A set

of logical formulations are defined in SBVR document [1].

The semantic formulations are used to control English

statements such as atomic Formulation, instantiation

Formulation, logical Operations, quantifications, and modal

formulation.

SBVR Based Notation for NL Text: In order to formalize

natural language text according to some standard, one of the

possible notations is structure English, in annex C of SBVR

1.0 document [1]. We have used the following formatting

rules of SBVR Structured English.

 Double underlined all individual concepts e.g. gold loan

customer

 Underlined all noun concepts e.g. student

 SBVR keywords are bolded e.g. at least, it is possible, it is

obligatory, some, each, etc.

 All verbs are italicized e.g. has , should be

In this paper, we have italicized the adjectives and possessive

nouns like verb concepts but used different color to

represent them.

2.2 Model Transformation

The components required for model transformation from NL

metamodel to SBVR metamodel are source metamodel (NL),

transformation engine, transformation rule, transformation

description. We used Sitra [17] as a transformation engine.

2768 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),28(3),2767-2775,2016

Transformation engine transform the source metamodel to

target metamodel by using transformation rules. The

complete sketch of model transformation is depicted in

Figure 1.

 < Conforms TO> <Conforms TO>

 Transformation Engine (SiTra)

Fig. 1. Model Transformation from NL to SBVR

MDA (Model Driven Architecture) is model based approach

to develop soft elements of source metamodel into related

elements of target metamodel. This mapping is used to

generate transformation rules. Transformation engine execute

these rules to automatically generate target metamodel from

source metamodel. . Model to model, model to text and text

to model, are various types of model transformation. Model

to model transformation transforms a model into another

model. In our study, we employed the model to model

transformation.

2.3 Natural Language Metamodel

There is no standard metamodel for natural languages such as

English. ProjectIT-RSL metamodel is natural language based

metamodel proposed by Videria and Silva [2]. But this

metamodel has some deficiencies, all concepts of natural

language (such as English) are not described e.g. actor,

operation and entity are commonly used semantic role labels

but not represented in the metamodel. However, in our

research, a complete metamodel of English is required to

transform natural language (such as English) to SBVR. We

have complemented the ProjectIT-RSL natural language

based metamodel (see Figure 2) to model transform natural

language to SBVR. Figure 2 shows the newly added elements

in ProjectIT-RSL metamodel and the metamodel is called

English metamodel.

Fig. 2. Proposed NL Metamodel

Other Requirement

Functional Requirement

Non-Functional Requirement

Simple Requirement Conditional Requirement Condition

Actor Operation Entity

Agent

Involuntary Causer

Possessor

Helping Verb

Action Verb

Recipient

Benefactee

Instrument

Patient

Location

Theme

Requirement

Target Model

Source Model

Source Metamodel

Target Metamodel

Transformation

Rules

Sci.Int.(Lahore),28(3),2767-2775,2016 ISSN 1013-5316;CODEN: SINTE 8 2769

May-June

3. Used Approach

To translate natural language into SBVR, the approach will

take NL requirements as input and then these requirements

are processed to obtain SBVR elements. This system

transformed NL metamodel into SBVR metamodel in three

steps, firstly requirements are POS (Parts–of–Speech) tagged,

then parser is used to obtain basic SBVR elements (such as

individual concept, verb concepts, noun concepts, objects

type, etc. In second step, NL to SBVR mapping is performed

through various sub steps. In last step, transformation rules

are generated to transform NL metamodel into SBVR

metamodel.

Fig. 3. Skeleton of Designed System

3.1 Processing Natural Language Specification

Lexical Analysis: Various tasks are performed to

accomplished lexical analysis such as sentence splitting,

tokenization, POS tagging, morphological analysis. The input

for Lexical processor is NL requirements and output is the list

of tokens with related lexical detail. The lexical analysis has

following steps:

a) Tokenization: In first step, the natural language text is

read and tokenized to produce tokens e.g. “Customer

should have business account to get credit card” is

tokenized as [Customer] [should] [have] [business]

[account] [to] [get] [credit] [card] [.]

b) Sentence Splitting: In the next step the margins of a

sentence is recognized by sentence splitter and then use

array-list to store all sentences separately.

c) Parts-of-Speech (POS) Tagging: POS tagging marking

up the tokens to respective part of speech, based on

definition as well as its context such as noun, verb, adverb,

adjective, helping verb, pronoun, prepositions etc. POS

tagger has been identified by Stanford POS tagger v 3.0 in

POS tagging [2].

d) Morphological Analysis: Morphological analysis is

performed for structuring and analyzing complex

problems. Morphological analysis performed on all verbs

and nouns. By morphological analysis detaches suffixes

normally attach to the nouns and verbs. For Example, a

noun “students” is analyzed as “student + s” and a verb

“selected” is analyzed as “select + ed

Syntactic Analysis: The structure of text is determined by

syntactic analysis. The text is syntactically analyzed to

generate parse tree. Figure 4 shows the parse tree of above

example.

 Parse Tree: (ROOT

 (S

 (NP (NN Customer))

 (VP (MD should)

 (VP (VB have)

 (S

 (NP (NN business) (NN account))

 (VP (TO to)

 (VP (VB get)

 (NP (NN credit) (NN card)))))))

 (. .)))

Fig.4. Parse Tree of NL Text

Processing Natural Language

Specification

NL to SBVR Mapping

 Mapping SBVR Elements

 Mapping SBVR Syntax

 Mapping SBVR Semantics

 Lexical Analysis

 Syntactic Analysis

 Semantic Analysis

Generating Transformation Rules

http://en.wikipedia.org/wiki/Parts_of_speech

2770 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),28(3),2767-2775,2016

Semantic Analysis: In semantic analysis phase firstly find out

the meanings of all words and then unite them to uncover the

meaning of sequence of words. Semantic analysis input is

parse tree and output is the appropriate representation of text.

Semantic role labeling is carried out in this phase [14].

Semantic role labeling is perform during natural language

processing for identifying semantic roles used with the verb

in a sentence. The meanings of the input sentence can easily

understand by the identification of such information as given

below.

AGENT: Agent is basically a participant who performs the

action.

RECIPIENT: Endpoint of a transferred item is animated as a

recipient.

PATIENT: If the action of a verb affects any participant, that

participant is animated as a patient.

THEME: If predicate properties, location or involuntary

movement of a participant, that participant animated as

theme.

INSTRUMENT: If participant use an instrument which

becomes the cause of some event or situation.

BENEFACTEE: when the action or situation is performed

which provides benefits to participant, and then this

participant is benefactee.

INVOLUNTARY CAUSER: The participant who is

responsible for any event which is not performed for this

purpose (intention).

LOCATION OR LOCATIVE PARTICIPANT: If the

location of situation or an action, or the path, goal or source

of a moving object is described by participant.

POSSESSOR: If some participant owned or temporarily

controlled by some other participant, then participant who

controlled is possessor.

These roles help out to semantically analyze the English text

as shown in Figure 5:

Fig. 5. Semantic Processing of English Text

According to the semantic role truck is identified as an agent,

transports as an operation and tools as a theme and factory as

a benefactee.

3.2 NL to SBVR Mapping

Mapping SBVR Elements: For NL to SBVR mapping,

elements of natural language are mapped to corresponding

SBVR elements. Table I shows the mapping of NL elements

to SBVR elements.

Table I: Mapping Between NL and SBVR Metamodel Element

NL Metamodel Elements S SBVR Metamodel Elements

Nouns e.g., Agent | Involuntary causer |

Theme | Patient | Benefactee

Object Type

Proper nouns e.g., Agent | Involuntary

Causer| theme | Benefactee | Patient

Individual Concept

Helping Verb +Action Verb | Action Verb Verb Concept

Object Type| Individual Concept + verb

concept

Unary fact Type

Object Type| Individual Concept + verb

concept+ Object Type

Binary Fact Type/

Associative Fact Type

Adjective Noun and Possessive Noun Characteristics

Enumeration of Verb Concept or Noun

Concept

Quantification

structures such as “is-part-of”, “included-

in” or “belong-to”

Partitive Fact Type

 structures such as “is-category-of” or “is-

type- of”, “is-kind-of”

 Categorization Fact Type

Mapping SBVR Syntax: Information required for the

transformation of NL text to SBVR representation is

extracted from syntax rules. Table II shows SBVR syntax

model,

truck transports the tools to the A factory

Agen

t
Operation Theme Beneficiary

http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Verb
http://en.wikipedia.org/wiki/Sentence_%28linguistics%29

Sci.Int.(Lahore),28(3),2767-2775,2016 ISSN 1013-5316;CODEN: SINTE 8 2771

May-June

Table II: SBVR Syntax Model

Logical Formulations SBVR
SBVR rule Modal Formulation +Fact Type

Modal Formulation Necessity Formulation/obligation Formulation/

 Permissibility Formulation/ Possibility

 Formulation

Fact Type Subject + Verb Concept + Object

Subject Noun Concept

Object Noun concept/Object Type + Characteristics

Verb Concept Verb/Helping Verb + Action Verb

Noun Concept Object Type/Individual Concept

Object Type Object Type/Object Type + Logical Operators

 + Object Type/Quantification + Object Type

 Individual Concept Individual Concept/Individual Concept + Logical

 Operators + Individual Concept / Quantification +

 Individual Concept

Mapping SBVR Semantics: In SBVR version 1.0, there are

five types of logical formulations but our approach used three

logical formulations, quantification, logical operations and

model operations.
Table III. SBVR Quantification

Logical Formulations SBVR

at least one existential quantification

 exactly one exactly-one quantification

 each universal quantification

 at most one at-most-one quantification

 more than one at-least-n quantification

 with n = 2

 at least n at-least-n quantification

 exactly n exactly-n quantification

 at most n at-most-n quantification

 some existential quantification

Table IV: SBVR Logical Operations

Logical Formulations SBVR

 it is not the case that p logical negation

 if p then q implication

 q if p implication

 p or q disjunction

 p if and only if q equivalence

 p and q conjunction

Table V: SBVR Modal Operation

Logical Formulations SBVR

 always necessity formulation

 must obligation formulation

 never necessity formulation

 must not obligation formulation

 may permissibility formulation

3.3 Generating Transformation Rules

The transformation of the source model into the target model

is described by the transformation rules. There are two parts

for each transformation rule, right hand side (RHS) for target

pattern and left hand side (LHS) side for source pattern.

Rule 1 [SBVR-Rule (modal-formulation, fact-Type)]

 = modal-formulation + fact-type

 Rule 1.1 [Modal-Formulation (modal-formulation]

 = modal-formulation

 Rule 1.1.1 [Modal-Formulation (necessity-

formulation)]

 = “It is necessary that”

 Rule 1.1.2 [Modal-Formulation (obligatory-

formulation)]

 = “It is obligatory that”

 Rule1.1.3 [Modal-Formulation (permissibility-

formulation)]

 = “It is permissible that”

 Rule 1.1.4 [Modal-Formulation (possibility-

formulation)]

 = “It is possible that”

Rule 2 Fact-Type (subject, verb-concept, Object)

 = subject + verb-Concept + Object

 Rule 2.1 Subject-part (subject)

 = subject

 Rule 2.1.1 Subject (noun-concept)

 = noun concept

 Rule 2.2 Verb-Concept (verb-concept)

 = verb-concept

2772 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),28(3),2767-2775,2016

 Rule 2.2.1 Verb-Concept (action-verb)

 =action-verb

 Rule 2.2.2 Verb-Concept (helping-verb, action-

verb)

 = helping-verb + action-verb

 Rule 2.3 Object-part (object)

 =object

 Rule 2.3.1 Object (noun-concept)

 =noun-concept

 Rule 2.3.2 Object (Object–Type,

Characteristics)

 = object–type + characteristics

Rule 3 Noun-Concept (noun-concept)

 = noun-concept

 Rule 3.1Noun-Concept (object-type)

 = object-type

 Rule 3.1.1 Object-Type (object-type)

 = object-type

 Rule 3.1.2 Object-Type (object-type, logical-

operators,

 Object-type)

 = object-type + logical-operators+ object-type

 Rule 3.1.3 Object-Type (quantification, object type)

 = quantification + object type

 Rule 3.2 Noun-Concept (individual-concept)

 = individual-concept

 Rule 3.2.1 Individual-Concept (individual-

concept)

 = individual-concept

 Rule 3.2.2 Individual-Concept (individual-

concept, logical- operators, individual-concept)

 =individual-concept + logical-

operator + individual- concept

 Rule 3.2.3 Individual-Concept

(quantification, individual- concept)

 = quantification + individual-concept

4. Case study

We illustrate a case study of KeePass Password Safe [23] to

show the performance of our approach in terms of accuracy

and fulfillment of user need. The problem statement of case

study is

KeePass consists of a database which contains data for one

or more users. Each user’s data are divided into groups and

subgroups so that they are organized in a form that serves

right the user. Every user has a unique Master Key which can

be simple or composite and its combination opens uniquely

the database. If lost there is no recovery. Groups and

subgroups contain entries with usernames, passwords URLs

etc that can be sent or copied to websites, application and

accounts. There is also the ability for a onetime key creation

to be used once in a transaction without the risk of reused by

others for any reason.

 NL (English) text of the problem statement of case study is

parsed lexically, semantically and syntactically to extract

SBVR vocabulary.

Table VI: SBVR Vocabulary Extracted from NL Text

Category Count Details

Object Types 15 keypass, user, database, data, masterkey, simple, composite,

groups, subgroups, applications, webpage, accounts, onetimekey,

form, transaction

Individual Concept 00

Verb Concept 09 consists, contains, divided, organized, serves, sent, copied, reused,

opens

Unary Fact Type 02 opens database, transactions reused

Associative Fact

Types

06 database for user, form serves user, user has Masterkey, its open

database, Group and Subgroup send or copy entries to websites,

applications, and accounts, OneTimeKey used in a transaction

Characteristics 03 user name, password, url

Quantification 02 One, more

Categorization Fact

Types

02 data is divided into groups and subgroups, MasterKey can be

simple or composite base contains data

Partitive Fact Types 02 KeyPass consists database, database contains data

There are four requirements for the problem statement of

the used case study, as shown in table VII:

According to SBVR structured English underlined the

object types e.g. groups, subgroups, accounts etc. italicized

the verb concepts e.g. has, can, contain etc. the SBVR

keywords are as e.g. It is necessary, It is obligatory etc.

The purple color used for characteristics which are also

italicized e.g. usernames, passwords, etc

Sci.Int.(Lahore),28(3),2767-2775,2016 ISSN 1013-5316;CODEN: SINTE 8 2773

May-June

Table VII: SBVR Based Software Requirements

Category Count Details

Software

Requirements

04 It is necessary that each user’s data are divided into groups and

subgroups so that they are organized in a form that serves right the

user.

It is obligatory that every user has a unique Master Key which can

be simple or composite and its combination opens uniquely the

database. If lost there is no recovery.

It is necessary that Groups and subgroups contain entries with

usernames, passwords, URLs etc that can be sent or copied to

websites, application and accounts.

It is possibility that there is also the ability for a onetimekey

creation to be used once in a transaction without the risk of reused

by others for any reason.

5. EXPERIMENTS AND RESULTS

In order to evaluate the performance of our presented

approach, we have solved five

Case studies including the case studies discussed in section

V. Table VIII shows the computed average recall, precision

and F-value by using the results of all these case studies.

Average recall for these case studies is 83.22% and average

precision is 87.13%, calculated average F-value is 85.14 %

that is very supportive for future development. For all solved

case studies, the Figure 6 shows the Recall, precision and F-

Value.

Table VIII: Evaluation Results for NL to SBVR Model Transformation

Input Ntest

Napproved

 Nwrong

Nomitted

Rec%

Prec%

 F-Value

C1 63 51 09 03 80.95 85.00 82.93

C2 48 39 07 02 81.25 84.78 82.98

C3 39 30 08 01 76.92 78.95 77.92

C4 51 43 06 02 84.31 87.76 86.00

C5 50 44 03 03 88.00 93.61 90.72

C6 58 51 04 03 87.93 92.73 90.27

 Average

83.22

87.13

85.14

70

75

80

85

90

95

C1 C2 C3 C4 C5 C6

Recall

Precision

F-value

Fig.6. Recall, Precision and F-Value for set of case studies

The presented approach is able to solve the examples that have

simple vocabulary. However, the presented approach is not able to

handle the examples having textual entailments and discourse

connections n the NL examples.

 6. RELATED WORK

Natural languages requirements are processed by different

tools to control ambiguity problems of NL. CM builder is a

case tool proposed by Harmain to create conceptual model

from NL requirements using UML [4]. LOLITA proposed a

case tool NL-OOPS which gives object model to improve the

process of software development [3]. Different solutions are

presented [10,11,12,13,14] to generate UML models from

natural language requirements

 In last few decades various controlled natural languages

are used instead of natural language to communicate

requirements, collected by system analyst for development

team. Controlled natural languages are of two types, human

oriented [8] and machine oriented [9]. The human oriented

controlled natural language is PENG (Processable English)

[5], ACE (Attempto Controlled English) [6], CPL (Computer

Processable Language) [7], etc. Brillant used SBVR to

represent natural language requirements into models that can

be executed [15]. Umber presented a SR-elicitor tool to

generate ambiguity less requirement document by using

SBVR [16]. Firstly this tool analyzed NL text lexically,

semantically and syntactically and then extract SBVR

elements to generate SBVR based rules.

 Bajwa presented SBVR2OCL prototype tool to

automatically generate OCL constraints [17]. This approach

facilitates the process of software development. Firstly

transform NL text into SBVR and then generate OCL

constraints from SBVR. For SBVR to OCL constraints

2774 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),28(3),2767-2775,2016

transformation involved different steps, firstly objects

oriented information is extracted from SBVR rule, and then

generate OCL expression from this extracted information and

finally mapped OCL syntax and semantics. Raj presented

transformation technique to generate different UML diagrams

from SBVR rules and vocabulary [18]. In the domain of

model transformation presented work [19,20,21] to transform

different models into SBVR and as a reverse engineering

generate SBVR model from other models.

 The related work shows that the approach of model

transformation has already been used to transform various

models into other models, but no one tried to transform NL

metamodel into SBVR metamodel. Our research presented

the transformation of NL metamodel to SBVR metamodel.

7 CONCLUSION AND FUTURE WORK

The most important benefit of this research was to gain

software requirements specification with minimum ambiguity

by generating SBVR based requirement specification using

model transformation approach. For model transformation

required source metamodel (NL) and target metamodel

(SBVR).Target metamodel is standard and available in SBVR

1.0 document.NL metamodel is not available, our research

also proposed NL metamodel. This research transforms NL

metamodel to SBVR metamodel by using Sitra

transformation engine.

REFERENCES

[1] OMG. 2013. Semantics of Business vocabulary and Rules

(SBVR), OMG Standard, v. 1.2.

[2] Silveira, N., & Manning, C. (2015). Does universal

dependencies need a parsing representation? an

investigation of english. Depling 2015, 310.

[3] Mich, L. (1996). NL-OOPS: from natural language to

object oriented requirements using the natural language

processing system LOLITA. Natural Language

Engineering. 2(2) p.167-181.

[4] Harmain, H. M., Gaizauskas, R. (2003). CM-Builder: A

Natural Language-based CASE Tool For object

Oriented Analysis. Journal of Automated Software

Engineering, 10(2), 157-181.

[5] Nojiri, S., & Manning, C. D. (2015, October). Software

Document Terminology Recognition. In 2015 AAAI

Spring Symposium Series.

[6] Fuchs, N.E., Kaljurand, K., and Kuhn, T. (2008).

Attempto Controlled English for Knowledge

Representation. In: Reasoning Web, LNCS, vol.

5224/2008:104–124.

[7] Mott, D. H., Shemanski, D. R., Giammanco, C., &

Braines, D. (2015, May). Collaborative human-machine

analysis using a controlled natural language. In SPIE

Sensing Technology+ Applications (pp. 94990J-

94990J). International Society for Optics and Photonics.

[8] Schwitter, R. 2010. Controlled Natural Languages for

Knowledge Representation, Coling 2010: Poster

Volume, Beijing, August 2010: 1113–1121

[9] Huijsen, W.O. 1998. Controlled Language –An

introduction. In: Proceedings of CLAW 98:1–15.

[10] Ilieva M., Olga O. (2005). Automatic Transition of

Natural Language Software requirements Specification

into Formal Presentation. Springer LNCS Vol. 3513,

pp.392--397 (2005).

[11] Ben Abdessalem Karaa, W., Ben Azzouz, Z., Singh, A.,

Dey, N., S Ashour, A., & Ben Ghazala, H. (2015).

Automatic builder of class diagram (ABCD): an

application of UML generation from functional

requirements. Software: Practice and Experience.

[12] Oliveira A., Seco N., Gomes P (2004). : A CBR

Approach to Text to Class Diagram Translation, In

TCBR Workshop at the 8th European Conference on

Case-Based Reasoning. (2004).

[13] Bajwa I., Samad A., Mumtaz S (2009). : Object Oriented

Software modeling Using NLP based Knowledge

Extraction, European Journal of Scientific Research,

35(01), p.22—33.

[14] Mohanan, M., & Samuel, P. (2016). Software

Requirement Elicitation Using Natural Language

Processing. In Innovations in Bio-Inspired Computing

and Applications (pp. 197-208). Springer International

Publishing.

[15] Kouamou., G. E., Feuto Njonko, P. B. (2010).

Cohérence devues dans la spécification des

architectures logicielles.In proceeding of 10th African

Conference on Research in Computer Science and

Applied Mathematics (CARI'2010), Ivory Coast,

October 18–21, 2010.

[16] Umber, A., Bajwa, I. S. (2012). A Step towards

Ambiguity less Natural Language Software

Requirements Specifications. IJWA, 4(1), 12-21.

[17] Bajwa I.S., Behzad Bordbar, Mark G. Lee, (2010), OCL

Constraints Generation from NL Text, IEEE

International EDOC conference 2010,

Vitoria,Brazil,pp.204-213.

[18] Raj A., Prabharkar T., Hendryx S., (2008).

Transformation of SBVR Business Design to UML

Models., In ACM Conference on India software

engineering, pp.29-38.

[19] Malik, S., Bajwa, I. S. (2013). Back to Origin:

Transformation of Business Process Models to Business

Rules. In Business Process Management Workshops

(pp. 611-622). Springer Berlin Heidelberg.

Sci.Int.(Lahore),28(3),2767-2775,2016 ISSN 1013-5316;CODEN: SINTE 8 2775

May-June

[20] freen, H., Bajwa, I.S., Bordbar, B. (2011) SBVR2UML:

A Challenging Transformation, Frontiers of Information

Technology (FIT), 2011 9th International Conference,

pp:33-38

[21] Kouzari, E. (2008). Software Requirements

Specifications for KeePass Password Safe. Software

Engineering, Aristotle University Thessaloniki,

Available at:

http://keepass.info/extensions/base/docs/SoftwareRequir

ementSpecification-KeePass-1.10.pdf

http://keepass.info/extensions/base/docs/SoftwareRequirementSpecification-KeePass-1.10.pdf
http://keepass.info/extensions/base/docs/SoftwareRequirementSpecification-KeePass-1.10.pdf

