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ABSTRACT: Test functions are important to validate new optimization algorithms and to compare the performance of various 

algorithms. There are many test functions in the literature, but there is no standard list or set of test functions one has to 

follow. New optimization algorithms should be tested using at least a subset of functions with diverse properties so as to make 

sure whether or not the tested algorithm can solve certain type of optimization efficiently. Here we provide a selected list of test 

problems for unconstrained optimization. In this paper we use three meta-heuristic optimization algorithms that are Particle 

Swarm Optimization (PSO), Differential Evolution (DE) and Artificial Bee Colony (ABC). To check the performance of these 

methods we use special suit of test functions. These test functions are continuous, differentiable, non-separable, non-scalable 

and uni-model in two dimensional. Test functions are important to check the accuracy of optimization algorithms and compare 

performance of them. The optimum results of these test functions are obtained by using MATLAB programming environment 

which demonstrated the effectiveness and applicability of test functions. Particle Swarm Optimization, Differential Evolution 

and Artificial Bee Colony are ranked with respect to function evaluation and then compare their results. 
 

Keywords: Continuous, Differentiable, Non-separable, Non-scalable and Uni-model test functions, Particle Swarm Optimization, 

Differential Evolution, Artificial Bee Colony 

 

INTRODUCTION  
Always theorists working in nonlinear programming area, as 

well as practical optimizers need to evaluate nonlinear 

optimization algorithms. Due to the hypothesis introduced in 

order to prove the convergence and the complexity of 

algorithms, the theory is not enough to establish the 

efficiency and the reliability of a method. As a consequence 

the only way to see the “power” of an algorithm remains its 

implementation in computer codes and its testing on large 

classes of test problems of different structures and 

characteristics. George B. Dantzig said “the final test of a 

theory is its capacity to solve the problems which originated 

it”. This is the main reason we assembled here this collection 

of large-scale unconstrained optimization problems to test the 

theoretical developments in mathematical programming.  

Nonlinear programming algorithms need to be tested at least 

in two different senses. Firstly, testing is always profitable 

into the process of development of an algorithm in order to 

evaluate the ideas and the corresponding algebraic 

procedures. Clearly, well designed test problems are very 

powerful in clarifying the algorithmic ideas and mechanisms. 

Secondly, a reasonably large set of test problems must be 

used in order to get an idea about the hypothesis used in 

proving the quality of the algorithm (local and global 

convergence, complexity) and to compare algorithms at an 

experimental level.  

Generally, two types of (unconstrained) nonlinear 

programming problems can be identified: “artificial 

problems” and “real-life problems”. The artificial nonlinear 

programming problems are used to see the behavior of the 

algorithms in different difficult situations like long narrow 

valleys, functions with significant null-space effects, 

essentially uni-modal functions, functions with a huge 

number of significant local optima, etc. Figures 1-6 present 

some types of artificial nonlinear function in unconstrained 

optimization. All of them are of 2 variables, thus having the 

possibility for their graphical representation. 

 

 
Fig.1. Unimodal function. 

 
Fig.2. Essentially unimodal functions. 

 
Fig.3. Functions with a small number of significant local optima. 

 

The main characteristic of artificial nonlinear programming 

problems is that they are relatively easy to manipulate and to 
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use into the process of algorithmic invention. Besides, the 

algorithmist may rapidly modify the problem in order to 

place the algorithm in different difficult conditions.  

Real-life problems, on the other hand, are coming from 

different sources of applied optimization problems like 

physics, chemistry, engineering, biology, economy, 

oceanography, astronomy, meteorology, etc. Unlike artificial 

(unconstrained) nonlinear programming problems, real-life 

problems are not easily available and are difficult to 

manipulate. They may have complicated algebraic (or 

differential) expressions, may depend on a huge amount of 

data, and possible are dependent on some parameters which 

must be estimated in a specific way. A very nice collection of 

real-life unconstrained optimization problems is that given by 

[1, 2].  

In this collection we consider only artificial unconstrained 

optimization test problems. All of them are presented in 

extended or generalized form. The main difference between 

these forms is that while the problems in generalized form 

have the Hessian matrix as a block diagonal matrix, the 

extended forms have the Hessian as a multi-diagonal matrix. 

Many individuals have contributed, each of them in important 

ways, to the preparation of this collection. We do not mention 

them here. An important source of problems was the CUTE 

collection established by [3]. Some other problems are from 

[4, 5] or are extracted from some other papers or technical 

reports. Generally, the problems in extended forms are 

slightly more difficult to be solved. The special suit of 

derivative free optimization is also discussed in [30-35] 

In this script a nonlinear mathematical test functions are 

selected as a test case for the capabilities of DE, PSO and 

ABC methods. The remaining of this paper is organized as 

follows: Section 2 presents the characteristics of test 

functions and the concepts of the proposed three methods in 

details. In Section 3, the performances of methods are tested 

on different unconstrained optimization test problems and the 

results are compared with each other in terms of number of 

function evaluations (computational cost). Finally, 

conclusions are given in Section 4.  

 

METHODS AND MATERIALS  
Characteristics of Test Functions 

The goal of any global optimization (GO) is to find the best 

possible solutions x∗ from a set X according to a set of 

criteria F = {f1, f2,…, fn}. These criteria are called objective 

functions expressed in the form of mathematical functions. 

An objective function is a mathematical function                     

f : D ⊂ ℜn
 → ℜ subject to additional constraints. The set D is 

referred to as the set of feasible points in a search space. In 

the case of optimizing a single criterion f, an optimum is 

either its maximum or minimum. The global optimization 

problems are often defined as minimization problems, 

however, these problems can be easily converted to 

maximization problems by negating f. A general global 

optimum problem can be defined as follows: 

 xfimize
x

min   

The true optimal solution of an optimization problem may be 

a set of x∗ ∈ D of all optimal points in D, rather than a single 

minimum or maximum value in some cases. There could be 

multiple, even an infinite number of optimal solutions, 

depending on the domain of the search space. The tasks of 

any good global optimization algorithm are to find globally 

optimal or at least suboptimal solutions. The objective 

functions could be characterized as continuous, 

discontinuous, linear, non-linear, convex, non-convex, uni-

modal, multimodal, separable and non-separable. 

According to [6], it is important to ask the following two 

questions before start solving an optimization problem; (i) 

what aspects of the function landscape make the optimization 

process difficult? (ii) What type of a priori knowledge is most 

effective for searching particular types of function landscape? 

In order to answer these questions, benchmark functions can 

be classified in terms of features like modality, basins, 

valleys, separability and dimensionality [7]. 

Modality: The number of ambiguous peaks in the function 

landscape corresponds to the modality of a function. If 

algorithms encounter these peaks during a search process, 

there is a tendency that the algorithm may be trapped in one 

of such peaks. This will have a negative impact on the search 

process, as this can direct the search away from the true 

optimal solutions. 

Basins: A relatively steep decline surrounding a large area is 

called a basin. Optimization algorithms can be easily 

attracted to such regions. Once in these regions, the search 

process of an algorithm is severely hampered. This is due to 

lack of information to direct the search process towards the 

minimum. According to [6], a basin corresponds to the 

plateau for a maximization problem, and a problem can have 

multiple plateaus. 

Valleys: A valley occurs when a narrow area of little change 

is surrounded by regions of steep descent [6]. As with the 

basins, minimizers are initially attracted to this region. The 

progress of a search process of an algorithm may be slowed 

down considerably on the floor of the valley. 

Separability: The separability is a measure of difficulty of 

different benchmark functions. In general, separable 

functions are relatively easy to solve, when compared with 

their inseparable counterpart, because each variable of a 

function is independent of the other variables. If all the 

parameters or variables are independent, then a sequence of n 

independent optimization processes can be performed. As a 

result, each design variable or parameter can be optimized 

independently. 

Dimensionality: The difficulty of a problem generally 

increases with its dimensionality. According to [7, 8], as the 

number of parameters or dimension increases, the search 

space also increases exponentially. For highly nonlinear 

problems, this dimensionality may be a significant barrier for 

almost all optimization algorithms. 

Artificial Bee Colony Algorithm 

In this method, two types of foragers, called employed and 

unemployed foragers are considered in the artificial hive of 

ABC. In the initialization of the algorithm, a new food source 

was produced for each employed forager. Employed foragers 

moved to nectar foraged from food source by conveying the 

position information of food sources to the hive. Onlooker 

bees, unemployed for-agers, were intended to try to improve 

food source positions of employed foragers by considering 
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information sent by employed foragers to the hive. In this 

algorithm, food sources signified feasible solutions for the 

optimization problem. Scout bee was considered as the other 

type of unemployed foragers. If the employed or onlooker 

bees could not improve a food source by in a certain time, the 

status of employed bee allotted to that food source was turned 

to a scout bee. ABC algorithm comprises four phases’ i.e. 

initialization, employed bee, onlooker bee and scout bee, 

realized sequentially. It is worth mentioning that ABC 

algorithm was an iterative algorithm and half of the 

population in the hive was employed bee and the other half 

was onlooker bee and only one scout bee could occur at the 

each iteration. Phases of the algorithm were articulated as 

follows [9].  

Initialization phase: This phase was utilized only once. 

Firstly, the population size was determined. Half of the 

population comprised of employed bees and the remaining 

half was onlooker bees [10]. A new food source was 

produced for each employed bee by using Eq. (1). 

 minmaxmin

, jjjji xxxx    i=1,2,…,N,j=1,2,…,D         (1) 

where xi,j was j
th 

dimension of i
th

 employed bee, 
max

jx and

min

jx were lower and upper bounds of j
th

 parameters, 

respectively,  was a random number in range of [0,1], N 

represented the number of employed bees and D was the 

dimensionality of the optimization problem. Moreover, in this 

phase, the abandonment counter (AC) of each employed bee 

was reset.  Thereafter, the fitness values of the food sources 

of the employed bees were calculated by using following: 














otherwise)f(abs1

)0f(if
f1

1

fit

i

i

ii
          (2) 

where fiti denoted the fitness value of food source of i
th

 

employed bee, fi was the value of objective function specific 

for the optimization problem of food source of i
th

 employed 

bee. Further, in this phase, limit value was set and a counter 

was created and reset for each food source [10]. 

Employed bee phase: In this phase, each employed bee 

aimed to find a new food source to improve self-solution by 

using 

 j,kj,ij,ij,i xxxv 
 

i,kϵ 1,2,…,N, j ϵ 1,2,…,D and  i ≠ k (3) 

where vi,j was the j
th

 dimension of i
th

 candidate solution, xi,j 

was j
th

 dimension of i
th

 employed bee, xk,j was j
th

 dimension of 

k
th

 employed bee,  acted as a random number in range of 

[−1,+1], N was the number of employed bee and D was the 

dimensionality of the optimization problem. Moreover, in this 

phase, the neighbor of candidate solution (k) and dimension 

of the problem (j) were randomly selected among the 

employed bee population and between dimensionality of the 

problem, respectively. 

The fitness value of the new food source was calculated by 

using Eq. (2) and in case of better than old one, the new food 

source position was learnt by the employed bee and the AC 

of the food source was reset and AC was increased by 1. 

Onlooker bee phase: In this phase, the employed bee shared 

the position information about the self-food source by 

dancing in the dance area of the hive. The onlooker bees 

watched out the dance and designated an employed bee by 

using fitness values of food sources of the employed bees and 

roulette wheel. The probability for selection was calculated as 

under: 

 


N

1j j

i
i

fit

fit
p           (4) 

where pi was the probability of the selected i
th

 employed bee. 

After the selection, the onlooker bees aimed to improve the 

solutions of employed bees by using Eq. (3). If new solution 

gained by the onlooker bee was better than the solution of 

employed bee, the employed bee got the solution of the 

onlooker bee memorized and the AC was reset. Otherwise, 

AC was incremented by 1 [10]. 

Scout bee phase: In this phase, the abandonment counter 

with maximum content was fixed and matched with pre-

determined limit value. If value of the AC having maximum 

content was greater than the limit value, the employed bee of 

food source of AC with maximum content becomes a scout 

bee. A new solution was generated for this new scout bee by 

using Eq. (1). AC of the new food source was reset. After 

generating new solution for itself, the scout bee returned to 

instatement i.e. employed bee. 
Table-1: Parameter table for ABC 

Description Values 

Maximum Number of Iterations MaxIt=2000 

Population Size (Colony Size) nPop=10 

Number of Onlooker Bees nOnlooker=nPop 

Abandonment Limit Parameter  L=200 

Acceleration Coefficient Upper Bound a=1 

Particle Swarm Optimization 

Natural creatures such as birds or fish behave as swarm. 

Many people research on them to know about how these 

creatures’ behave as swarm. Reynold research on boid and 

develop the rules of swarm behavior. Boyd and Richerson 

research on decision process of people and develop that 

people use two things when they make decision, ist they use 

their own experience and second they use the experience of 

other’s people. After this in 1990’s Dorigo gave the idea of 

ant colony optimization (ACO) that was based on behavior of 

insects such as ants. After these researches Kennedy and 

Eberhert work on the swarm behavior of birds and develop 

Particle Swarm Optimization [11]. 

The purpose of PSO was too treated with nonlinear 

optimization problems but now it is also use for solving 

combinatorial optimization problems. PSO also treat with 

both discrete and continuous problems. 

During research on boid reynold use the following three 

rules. 

i. Every agent keeps away from nearest agent. 

ii. Try to go towards centre of swarm 

iii. Try to go towards destination 

And the research results then use in Particle Swarm 

optimization. 

During research on the decision process of human beings, 

Boyd and Recherson develop the idea of individual learning 
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and culture transmission. Boyd and Recherson develop that 

people use two type of information when they make 

decisions. Firstly they use their own experience i.e. they try 

different choices and know which one is better.  Secondly 

they use experience of other’s people i.e. they know which 

choice their neighbors have best so far [12-14].  

Eberhert and Kennedy research on swarm behavior of birds 

flocking and develop PSO. The position of each agent is 

represented by      axis position and velocity is represented 

by        w.r.t          axis respectively. 

Every agent knows its best position represented by (pbest) , 

this is the personal experience of the particle .also every 

particle knows best position in group represented by (gbest) 

due to which particle knows how other agents perform 

surrounding it, which is other’s experience. 

Now every agent uses the following information to modify its 

position: 

 Current position     

 Current velocity       

 Difference between current position and pbest 

 Difference between current position and gbest 

The following velocity equation is used for modifying 

velocity. 

  
       

          (         
 )         

 (        
 ) 

Where   
  is the current velocity of ith agent at iteration k,   

is weighting function   and    are weighting coefficients , 

rand is random num between 0 and 1 and   
  is current 

position of agent.        is best position of agent i and       

is best position in group. 

Following weighting function is used in above eq. 

       
         

       

      

where 

                =initial weight 

                =final weightd  

                  =maximum iteration number 

                =current iteration number 

 
Fig.4. Modification of searching point. 

Equation 1 can be explained as follow. RHS of equation 1 

have three terms. First term shows the previous velocity and 

2
nd

 and 3
rd

 terms use to modify the velocity of agent. Without 

2
nd

 and 3
rd

 terms the agent will keep moving in the same 

direction so 1
st
 term corresponds to diversification (as agent 

try to discover new areas). 2
nd

 term corresponds to 

intensification as agent try to converge its         and          

PSO using (1) and (2) called inertia weights approach (IWA). 

The following equation use to modify the agents position. 

  
      

    
    

The PSO can be summarize as  

1. Generate initial condition of each agent. Initially 

searching point   
  and velocity   

  of every agent is set 

randomly within given range.Current searching point is 

set as pbest and best value among all pbest is set as gbest 

[15]. 

2. Evaluation of searching point .Calculate value of 

objective function for every agent. If this value is better 

than current pbest then pbest is replace by this value. 

And if the best value among new pbest is better than 

current gbest then gbest is replace by that value. 

 
Fig.5. Searching concept with agent in solution space. 

3. Modification of searching point. The searching point is is 

modified by using equation 1, 2 and 3. 

4. Exit criteria. If current iteration reaches the pre 

determine positive number then stop the procedure [16].  
Table-2: Parameter table for PSO 

Description Values 

Maximum Number of Iterations MaxIt=100 

Population Size (Swarm Size) nPop=10 

Inertia Weight w=1 

Inertia Weight Damping Ratio wdamp=0.99 

Personal Learning Coefficient c1=1.5 

Global Learning Coefficient c2=2.0 

Differential Evolution 

DE was first introduced by Storn and Price in (1994-1996).It 

is stochastic direct search optimization method. It is 

considered as fast and accurate method. 

Population Structure: The versatile implementation of DE 

maintains a pair of vector population. The current population 

is represented by   that is composed of vectors      and 

              ;                 

                

               ;                

Where                 indicate generation,   is 

population index run from 0 to      and   represents 

parameters within vectors run from   to    . 

Initialization: Before initialization upper and lower bounds 

          are specified .Once bounds are specified, a 

random number generator assign each parameter of every 

vector a value within given range. e.g. for generation      

            (   ) (         )       

The random number generator      (   ) returns a 

uniformly distributed random number within range     ). 
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Mutation: To produce new population of    vectors, DE 

mutates and recombines vectors. A weighted difference of 

two vectors is added to randomly select third vector. 

Following equation shows how three different vectors 

combine to produce mutant vector      [17]. 

             (           ) 

The scale factor, F ∈(0,1+), is a positive real number that 

controls the rate at which the population evolves. While there 

is no upper limit on F, effective values are seldom greater 

than 1. The base vector index, r0 is assumed to be a randomly 

chosen vector index that is different from the target vector 

index, i. Except for being distinct from each other and from 

the base and target vector indices, the difference vector 

indices, r1 and r2, are also randomly selected once per mutant. 

Crossover: DE crosses each vector with a mutant vector  





 


otherwisex

jjorCrrandifu
uU

gij

randjgij

gijgi

,,

,,

,,,

)1,0((
 

  ∈ (   ) is user defined value that controls fraction of 

parameter value. 

Crossover comprise    to uniform random no. generator.If 

random no. is less then or equal to    then it is selected 

otherwise parameter is copied by       [18]. 

Selection: If objective function value of      is less then the 

objective function value of its target vector      then it replace 

target vector in next generation otherwise      will remain in 

the population for next generation. 





 


otherwisex

xfgufifu
x

gi

gigi

gi

,

,,

1,

)(),(
 

  Once new generation is establish the process is repeat again 

and again until optimum is located or pre-determined 

termination criterion is obtained [19]. 
Table-3: Parameter table for PSO 

Description Values 

Maximum Number of Iterations MaxIt=1000 

Population Size nPop=10 

Lower Bound of Scaling Factor beta_min=0.2 

Upper Bound of Scaling Factor beta_max=0.8 

Crossover Probability pCR=0.2 

 

RESULTS AND DISCUSSIONS  
Ackley 2 Function [20] 

Function: ef xx
2

2

2

1
02.0

1
200


  

Range of function:  3232  ix  

The global minimum is located at  0,0  

Function value at global minimum =   -200 
Table-4: Compression results for Ackley 2 Function 

Meta-heuristic 

Method 

Calculated 

Value 

Number of 

iterations 
Rank 

DE -200 41th 2 

PSO -200 87th 3 

ABC -200 31st 1 

We execute the all algorithms several times with the 

parameter setting given in table 1. In Ackley 2 function the 

optimum point is obtained is -200 by all three methods but 

the performance of ABC is outstanding. ABC found the 

optimum value in 31 iterations but DE performs 41 iterations 

and PSO performs 87 iterations. So we conclude that ABC is 

the best choice to solve Ackley2 function among other two 

functions. Final the ranking is also in favor of ABC. 

 
Fig 6: 3D surface plot for Ackley 2 Function 

Ackley 3 Function [20] 

Function:    

eef
xxxx 21

2
2

2
1 3sin3cos02.0

2
5200


  

Range of function:  3232  ix  

The global minimum is located at =  04.0,0   

Function value at global minimum =       1418.219  

 
Fig. 7: 3D surface plot for Ackley 3 Function 
Table-5: Compression results for Ackley 3 Function 

Meta heuristic 

Method 

Calculated 

Value 

Number of 

iterations 
Rank 

DE -195.23 9th 1 

PSO -195.629 56th 3 

ABC 0.67676 22nd 2 

We execute the all algorithms several times with the 

parameter setting given in table 1. In Ackley 3 function the 

optimum point is obtained is -195.23 by all three methods but 

the performance of DE is outstanding. DE found the optimum 

value in 9 iterations but ABC performs 22 iterations and PSO 

performs 56 iterations. So we conclude that DE is the best 

choice to solve Ackley3 function among other two functions. 

Final the ranking is also in favor of DE.     

Beale function [20] 

Function:      
 3

211

2
211211

625.2

25.25.1
2

22

3

xxx

xxxxxxf x








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Range of function:  5.45.4  ix  

The global minimum is located at   5.0,3  

Function value at global minimum =       0 

 
Fig 8: 3D surface plot for Beale function 

Table-6: Compression results for Beale function 

Meta heuristic 

Method 

Calculated 

Value 

Number of 

iterations 
Rank 

DE 0 490 3 

PSO 0 201 2 

ABC 1.1785x10
-9

 57 1 

We execute the all algorithms several times with the 

parameter setting given in table 1. In Beale function the 

optimum point is obtained is 1.1785       by all three 

methods but the performance of ABC is outstanding. ABC 

found the optimum value in 57 iterations but PSO performs 

201 iterations and DE performs 490 iterations. So we 

conclude that ABC is the best choice to solve Beale function 

among other two functions. Final the ranking is also in favor 

of ABC.     

Booth function [20] 

Function:       5272 2121

22

4
  xxxxf x  

Range of function:  1010  ix     

The global minimum is located at   3,1  

Function value at global minimum =       0 

 
Fig 9: 3D surface plot for Booth function 

Table-7: Compression results for Booth function 

Meta heuristic 

Method 
Calculated Value 

Number of 

iterations 
Rank 

DE 0 337 3 

PSO 0 159 2 

ABC 2.3827       80 1 

We execute the all algorithms several times with the 

parameter setting given in table 1. In Booth function the 

optimum point is obtained is 2.3827       by all three 

methods but the performance of ABC is outstanding. ABC 

found the optimum value in 80 iterations but PSO performs 

159 iterations and DE performs 337 iterations. So we 

conclude that ABC is the best choice to solve Booth function 

among other two functions. Final the ranking is also in favor 

of ABC.     

Brent function [21] 

 Function: 
      exxf xxx

2

2

2

11010 21

22

5


   

Range of function:  1010  ix   

The global minimum is located at   0,0  

 Function value at global minimum =       0 

 
Fig 10: 3D surface plot for Brent function 

Table-8: Compression results for Brent function 

Meta heuristic 

Method 
Calculated Value 

Number of 

iterations 
Rank 

DE 3.0055       100 2 

PSO 0 171 3 

ABC 3.5391       84 1 

We execute the all algorithms several times with the 

parameter setting given in table 1. In Brent function the 

optimum point is obtained is 3.5391      by all three 

methods but the performance of ABC is outstanding. ABC 

found the optimum value in 84 iterations but PSO performs 

171 iterations and DE performs 100 iterations. So we 

conclude that ABC is the best choice to solve Brent function 

among other two functions. Final the ranking is also in favor 

of ABC.   

Cube function [22] 

Function: 
2

1

23

126 )1()(100)( xxxxf   

Range of function:  1010  ix   

The global minimum is located at   0,0  

 Function value at global minimum =       0 
Table-9: Compression results for Cube Function 

Meta heuristic 

Method 

Calculated 

Value 

Number of 

iterations 
Rank 

DE 0 1365 3 
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PSO 0.00012446 142 2 

ABC 0.00033169 99 1 

 

 
Fig 11: 3D surface plot for Cube Function 

We execute the all algorithms several times with the 

parameter setting given in table 1. In Cube function the 

optimum point is obtained is 0.00012446 by all three methods 

but the performance of ABC is good with respect to iteration 

but not to function value. ABC found the optimum value in 

99 iterations but PSO performs 142 iterations and DE 

performs 1365 iterations. So we conclude that PSO is the best 

choice to solve Cube function among other two functions. 

Final the ranking is also in favor of ABC.   

El-Attar-Vidyasagar-Dutta function
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Fig 12: 3D surface plot for El-Attar Vidyasgar function 

Table-10: Compression results for El-Attar Vidyasgar function  

Meta heuristic 

Method 

Calculated 

Value 

Number of 

iterations 
Rank 

DE 1.7128 77th 2 

PSO 1.7128 82th 3 

ABC 1.7128 47th 1 

We execute the all algorithms several times with the 

parameter setting given in table 1. In El-Attar Vidyasgar 

function the optimum point is obtained is 1.7128 by all three 

methods but the performance of ABC is outstanding. ABC 

found the optimum value in 47 iterations but PSO performs 

82 iterations and DE performs 77 iterations. So we conclude 

that ABC is the best choice to solve El-Attar-Vidyasagar-

Dutta function among other two functions. Final the ranking 

is also in favor of ABC.     

Leon function [22]  

Function is 
     1
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xxxf x  

  

Range of function:  2.12.1  ix   

The global minimum is located at   1,1  

 Function value at global minimum =       0  

 
Fig 13: 3D surface plot for El-Attar Leon function 

Table-11: Compression results for El-Attar Leon function  

Meta heuristic 

Method 

Calculated 

Value 

Number of 

iterations 
Rank 

DE 0 1089 2 

PSO 0 2235 3 

ABC 0.00028426 165 1 

We execute the all algorithms several times with the 

parameter setting given in table 1. In Leon function the 

optimum point is obtained is 0.00028426by all three methods 

but the performance of ABC is outstanding. ABC found the 

optimum value in 165 iterations but PSO performs 2235 

iterations and DE performs 1089 iterations. So we conclude 

that ABC is the best choice to solve Leon function among 

other two functions. Final the ranking is also in favor of 

ABC.   

Matyas function [24] 

Function is: 
    21

2

9
48.02

2
2

1
26.0 xxx xxf  

  

Range of function:  1010  ix   

The global minimum is located at   0,0  

 Function value at global minimum =       0  
Table-12: Compression results for Matyas function 

Meta heuristic 

Method 

Calculated 

Value 

Number of 

iterations 
Rank 

DE 1.323       100 2 

PSO 0 2853 3 

ABC 2.8248      65 1 
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Fig 14: 3D surface plot for Matyas function 

We execute the all algorithms several times with the 

parameter setting given in table 1. In Matyas function the 

optimum point is obtained is 2.8248       by all three 

methods but the performance of ABC is outstanding. ABC 

found the optimum value in 65 iterations but PSO performs 

2853 iterations and DE performs 100 iterations. So we 

conclude that ABC is the best choice to solve Matyas 

function among other two functions. Final the ranking is also 

in favor of ABC.   

Rotated Ellipse function [25] 

Function is: 
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Range of function:  500500  ix   

The global minimum is located at   0,0  

 Function value at global minimum =       0  

 
Fig 15: 3D surface plot for Rotated Ellipse Function 

Table-13: Compression results for Rotated Ellipse Function 

Meta heuristic 

Method 
Calculated Value 

Number of 

iterations 
Rank 

DE 0 1960 3 

PSO 0 902th 2 

ABC 1.6747       77th 1 

We execute the all algorithms several times with the 

parameter setting given in table 1. In Rotated Ellipse function 

the optimum point is obtained is 1.6747       by all 

three methods but the performance of ABC is outstanding. 

ABC found the optimum value in 77 iterations but PSO 

performs 902 iterations and DE performs 1960 iterations. So 

we conclude that ABC is the best choice to solve Rotated 

Ellipse function among other two functions. Final the ranking 

is also in favor of ABC.   

Rotated Ellipse 2 function [25]  

Function is 
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Range of function:  500500  ix   

The global minimum is located at   0,0  

 Function value at global minimum =       0  

 
Fig 16: 3D surface plot for Rotated Ellipse 2 

Table-14: Compression results for Rotated Ellipse 2 

Meta heuristic 

Method 
Calculated Value 

Number of 

iterations 
Rank 

DE 0 1942 3 

PSO 0 881 2 

ABC 2.5715       85
th
 1 

We execute the all algorithms several times with the 

parameter setting given in table 1. In Rotated Ellipse function 

the optimum point is obtained is 2.5715        by all 

three methods but the performance of ABC is outstanding. 

ABC found the optimum value in 85 iterations but PSO 

performs 881 iterations and DE performs 1942 iterations. So 

we conclude that ABC is the best choice to solve Rotated 

ellipse 2 function among other two functions. Final the 

ranking is also in favor of ABC.   

Rump function [26] 

Function is 
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Range of function:  500500  ix   

The global minimum is located at   0,0  

 Function value at global minimum =       0  
Table-15: Compression results for Rump function 

Meta heuristic 

Method 

Calculated 

Value 

Number of 

iterations 
Rank 

DE 0 235 2 

PSO 0 861 3 

ABC 0 98 1 

We execute the all algorithms several times with the 

parameter setting given in table 1. In Rotated Ellipse function 

the optimum point is obtained is 2.5715        by all 

three methods but the performance of ABC is outstanding. 
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Fig 17: 3D surface plot for Rump function 

ABC found the optimum value in 85 iterations but PSO 

performs 881 iterations and DE performs 1942 iterations. So 

we conclude that ABC is the best choice to solve Rump 

function among other two functions. Final the ranking is also 

in favor of ABC.   

Zirilli or Aluffi-Pentini’s function [27] 

Function is: 
  2
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13

5.01.05.025.0 xxxxxf    

Range of function:  1010  ix   

The global minimum is located at   0,0465.1  

 Function value at global minimum =       3523.0  

 
Fig 18: 3D surface plot for Zirilli or Aluffi-pentini’s function 

Table-16: Compression results for Aluffi-pentini’s function 

Meta heuristic 

Method 

Calculated 

Value 

Number of 

iterations 
Rank 

DE -0.35232 18 -0.3523 

PSO -0.3523 51 -0.3523 

ABC -0.35239 12 -0.3523 

We execute the all algorithms several times with the 

parameter setting given in table 1. In Rotated Ell Zirilli or 

Aluffi-Pentini’s ipse function the optimum point is obtained 

is -0.35239 by all three methods but the performance of ABC 

is outstanding. ABC found the optimum value in 12 iterations 

but PSO performs 51 iterations and DE performs 18 

iterations. So we conclude that ABC is the best choice to 

solve Zirilli or Aluffi-Pentini’s function among other two 

functions. Final the ranking is also in favor of ABC.   

 

Trecanni function [28] 

Function is: 
2

21

3

1

4

1 44 xxxx   

Range of function:  55  ix   
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Fig 19: 3D surface plot for Trecanni function 

Table-17: Compression results for Trecanni function 

Meta heuristic 

Method 

Calculated 

Value 

Number of 

iterations 
Rank 

DE -15.2344 23 2 

PSO -15.2344 43 3 

ABC -15.2344 12 1 

We execute the all algorithms several times with the 

parameter setting given in table 1. In trecanni function the 

optimum point is obtained is -15.2344 by all three methods 

but the performance of ABC is outstanding. ABC found the 

optimum value in 12 iterations but PSO performs 43 

iterations and DE performs 23 iterations. So we conclude that 

ABC is the best choice to solve trecanni’s function among 

other two functions. Final the ranking is also in favor of 

ABC.   

Wayburn Seader function [29] 

Function is : 
2
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115 )42()17(  xxxxf  

Range of function:  500500  ix   

The global minimum is located at   0,0  
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Fig 20: 3D surface plot for Wayburn Seader function 

We execute the all algorithms several times with the 

parameter setting given in table 1. In wayburn function the 
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optimum point is obtained is 0  by all three methods but the 

performance of DE is outstanding. DE found the optimum 

value in 580 iterations but PSO performs 1000 iterations and 

ABC performs 621 iterations. So we conclude that DE is the 

best choice to solve Wayburn function among other two 

functions. Final the ranking is also in favor of DE.  
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