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ABSTRACT: In this paper we obtain new Ostrowski type inequalities for  -times differentiable functions to derive new and 

efficient quadrature rules. The error bounds of the quadrature rules are shown to depend on the upper and lower bound of the 

integrand and its derivatives. The efficiency of the quadrature rules is demonstrated with the help of several examples. 
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INTRODUCTION 
In 1938, Ostrowski [24] proved a very important inequality, 

which states that for a function             of bounded 

derivative, the following inequality holds: 
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The following result is the extension of the result (1) given 

by Dragomir and Wang [5, 6] for absolutely continuous 

functions such that     belongs to          ,      . 

Theorem 1  Let             be absolutely continuous 
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Most recently, Masjed-Jamei and Dragomir [21] have 

presented some analogues of the Ostrowski’s inequality by 

using the following identities and improved all the results 

involving Lebesgue  -norms of    ( ),      : 
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Moreover, the results given in [21] have advantage over the 

previous results since the necessary computations to find 

bounds in these results depend on pre-assigned functions 

other than   or   . They give error bounds of the midpoint 

rule and other nonstandard quadrature rules. 

The Ostrowski’s inequality (1) has been generalized, 

extended and refined in different ways. Alomari [1], Cerone 

[2] and Dragomir [11] established Ostrowski type 

inequalities for the Riemann-Stieltjes integrals. Dragomir 

[8] proved some Ostrowski type inequalities for 

Lipschitzian mappings and for monotonic functions. Fink 

gave Ostrowski type inequalities for functions of bounded 

variation. Various other Ostrowski type inequalities in one 

variable and several variables and their applications to 

numerical analysis and statistics can be found in [4,7], 

[9-10], [13-22], [26] and in the references of these articles. 

A more general form of Ostrowski’s result for mappings 

that posseses  th derivative was given by Milovanovi   

and Pe ̆ari   in [23, p. 468.] as follows. 

Theorem 2 [23] Let             be a mpping which 

possesses      derivative with 
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Cerone et. al [3] apprached to another generality of the 

Ostrowski inequality for mappings which posesses  th 

derivatives as mentioned in the following theorem. 

Theorem 3 [3] Let             be a mapping with 

absolute continuity of  (   )  on         such that 

 ( )           . Then for all          , we have the 

inequality: 
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They used the following Lemma to prove the above result. 

Lemma 1 [3] Let             be a mapping with the 

absolute continuity of  (   )  on        . Then for all 

         , the following identity holds: 
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In section 2, we introduce a new analogue of the Ostrowski 

inequalities for  -times differentiable functions which not 

only improve the results involving Lebesgue norms of the 

 th derivative but also contain the results from [21] for 

    as special case. In section 3, we use the inequalities 

obtained in section 2 to derive new quadrature rules. Their 

efficiency is demonstrated using specific examples as well 

as by deriving their respective error bounds. 

 

2  Derivation of Ostrowski type Inequalities for 

 -times differentiable functions 

Throughout in this section we will consider the following 

notations 
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Theorem 4  Let             be a mapping with 

absolute continuity of  (   )  on           If  ( )  
 ( )( )   ( )  for any   and            and 

         , then the following inequality holds: 
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Proof: From the identity (6) and the kernel defined by (7), 

we have 
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 By re-arranging (11), the main inequality (8) can be 

derived. 

Corollary 1  Suppose   ( )( )  is bounded by  ( )  
          

           and  ( )       
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            In this case the main inequality 

(8) takes the form 
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Theorem 5  Let             be a mapping with 

absolute continuity of  (   )  on           If  ( )  
 ( )( ) for any            and          , then the 

following inequality holds: 
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From (14) one can easily derive (13). 
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Theorem 6 Let             be a mapping with 

absolute continuity of  (   )  on           If  ( )( )  
 ( )  for any            and          , then the 

following inequality holds: 

 

  
(∫  

 

  

(    )
  ( )   ∫  

  

 

(    )
  ( )  ) 

   (       ) 

 (∫  
  

  

 ( )   (     )  ) 

 
(  )   

     

(  (       )  ∫  
  

  

 ( )  ) 

 
 

  
(∫  

 

  

(    )
  ( )   ∫  

  

 

(    )
  ( )  )

   (       ) 

 (∫  
  

  

 ( )   (     )  )               (  ) 

Proof:  We observe that 

∫  
  

  

  (   ) ( ( )( )   ( ))    

 (  )   (  (       )  ∫  
  

  

 ( )  ) 

 
 

  
(∫  

 

  

(    )
  ( )   ∫  

  

 

(    )
  ( )  )  

 Therefore 

|(  )   (  (       )  ∫  
  

  

 ( )  ) 

 
 

  
(∫  

 

  

(    )
  ( )   ∫  

  

 

(    )
  ( )  )| 

 ∫  
  

  

|  (   )| (( ( )   ( )( )))    

    
         

|  (   )|∫  
  

  

(( ( )   ( )( )))    



2286 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),28(3),2283-2290,2016 

May-June 

   (       ) 

 (∫  
  

  

 ( )   (     )  )                       (  ) 

From (17) one can easily derive (16). 

Corollary 3  If  ( )      , then inequality (16) 

reduces to  
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Derivation of Numerical Quadrature Rules 

In this section, we propose some new error bounds for new 

quadrature rules involving higher order derivatives of the 

function   . These error bounds depend on the continuous 

functions   and   which are the upper and lower bounds 

of the  th derivative of the function  . In fact, the 

following new quadrature rules can be obtained while 

investigating the error bounds using theorems 4, 5 and 6:  
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To demonstrate and compare the efficiency of the above 

mentioned quadrature rules we numerically integrate 

several functions with these quadrature rules and give their 

results in table 1 with the corresponding errors. The errors 

mentioned in table 1 is the absolute value of the difference 

of the exact value of the integral and its numerical value. All 

the quadrature rules report exact value of ∫  
 

 
  ( )   for 

   . This is because it is a polynomial of degree 2 and all 

it’s higher derivatives are zero. For a polynomial of degree 

 ,       will give exact value of the integral. But 

acceptable error estimates can be obtained for smaller 

values of  . For ∫  
 

 
 ( )  ,     ( ) give an error of the 

order of      for     while the rest of the quadrature 

rules give a similar error for    . Similarly for all other 

functions     ( )  report errors of the order of      for 

relatively smaller values of  . Specifically,     ( ) give an 

excellent estimate for ∫  
 

 
 ( )   and ∫  

 

 
  ( )   at 

    and     respectively. 

In general     ( ) gave better results as compared to the 

rest of the quadrature rules for much smaller values of  . 

Therefore we can conjecture that     ( )  is 

computationally more efficient both in terms of error 

approximation, simplicity, and time. As a rough estimate 

we integrated  

 ( )     (    )   (   (   )) 

using the built in algorithms of Mathematica 10.0 which 

took       seconds to give its approximate answer. To 

obtain similar approximation for ∫  
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less than a second. The performance of some the quadrature 

rules can be seen to be poor for ∫  
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    ( ) and     ( ) to achieve a reasonable approximation 

error. The reasons behind this need to be investigated. 

Corollary 4  If  ( )   ( )( )   ( )  for any   and 
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 in (8), the error of the midpoint type rule     ( ) can 
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 As a special case if we take  ( )       and   ( )  
      then the above inequality takes the following form 
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Corollary 5  If the assumptions of Theorem 4 are satisfied 

and      in (8), we get the following error bounds of 

nonstandard quadrature rule      
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Again as a special case if we take     ( )( )    , 

where    and    are non-zero constants then the following 

error bounds hold 

(     )
   

 (   ) 
 (  ) (     )         

 (  )   (∑  

   

   

(     )
   

(   ) 
 (  )  ∫  

  

  

 ( )  ) 

 
(     )

   

 (   ) 
       (  ) (     )      (  ) 

Corollary 6  If the assumptions of Theorem 4 are satisfied 

and       in (8), we get the following error bounds of 

nonstandard quadrature rule 
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Again as special case if we take     ( )( )         and 

   are non-zero constants then the following error bounds 

hold 
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Corollary 7  If  ( )   ( )( )   ( )  for any   
        and  ,            then the error bounds of the 

nonstandard quadrature rule     ( ) can be bounded as 
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Proof: In order to prove (25) we need to use the results of 

Theorem 5 and Theorem 6 simultaneously. By replacing 
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Corollary 8  If  ( )   ( )( )   ( )  for any   
        and  ,           , then the error bounds of the 

nonstandard quadrature      rule are given as follows 
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Proof: The proof of (28) is similar to that of (25). 

Corollary 9  If  ( )   ( )( )   ( )  for any   
        and  ,           , then the error bounds of the 

nonstandard quadrature      rule can have the following 

bounds 
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Proof: The proof of (29) can be easily done by using (13) 

and (16) choosing     . 

Corollary 10  If  ( )   ( )( )   ( )  for any   

        and  ,           , then the error bounds of the 

nonstandard quadrature      rule can be found as 
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Proof: The error bounds given by (30) can be obtained from 

(13) and (16) for     . 

Remark 1  For     all the results established above 

become the results proved in [21]. The results from [21] 

give error bounds of the midpoint rule and some other 

nonstandard quadrature rules which depend upon the 

functions  ,            such that  ( )     ( )   ( ) 

for all           but our results can be used to find error 

bounds of many other new nonstandard quadrature rules 

for a particular choice of the natural number     which 

are expected to be very useful in numerical integration. 
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Table  1 
Performance of the proposed 

quadrature rules 

  

Method                                                              Exact  

∫  
 

 

 
 
( )   3, 2.83333 3, 2.83333 3, 2.83333 3, 2.83333 3, 2.83333 3, 2.83333 3, 2.83333 2.83333  

Error 0 0 0 0 0 0 0  

∫  
 

 

 
 
( )    5, 0.301153 7, 0.30119 7, 0.301021 7, 0.301163 7, 0.301174 7, 0.301905 7, 0.300307 0.301169 

Error 1.5      2.1      1.4      5.5      5.65      7.3      8.4       

∫  
 

 

  ( )   5, 0.909366   7, 0.909524 7, 0.909408 7, 0.909325 7, 0.909336 7, 0.910268 7, 0.908664 0.909331 

Error 3.5      1.9      7.6      5.5      5.65      9.3      6.6       

∫  
 

 

 
 
( )   5, 0.793033 6, 0.793056 6, 0.793182 6, 0.793042 6, 0.793023 6, 0.792417 6, 0.793821  0.793031  

Error 1.48      2.4      1.5      1.1      8.49      6.1      7.8       

∫  
 

 

 
 
( )   7, 1.46257  11, 1.46253 15, 1.46336 10, 1.46252 10, 1.46277 19, 1.4626 19, 1.46272 1.46265  

Error 8.6      1.2      7.0      1.2      1.1      5.3      6.7       

∫  
 

 

 ( )   7, 0.241593 20, 0.22908 20, 0.241572 8, 0.241592 8, 0.241593 2, 0.239583 18, 0.241601 0.241549 

Error 4.3      1.2      2.3      4.2      4.3                         

∫  
 

 

 
 
( )   2, 1.3138 11, 1.31385 23, 1.31385 11, 1.3139 11, 1.31377 18, 1.31394 18, 1.31294 1.31383 

Error 3.6      1.4      1.4                                           

∫  
 

 

 
 
( )   3, 1.34102 5, 1.34167 7, 1.34149 6, 1.34149 6, 1.34146 7, 1.34138 8, 1.34145 1.34147 

Error 4.5      1.9      1.9                                           
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