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ABSTRACT: In this paper a 2D Poisson’s equation with Dirichlet boundary conditions is discretized by using the finite 
difference method. The discretized form of the equation leads to a system of linear equations of the form AX=B which is solved 
by Successive Over Relaxation (SOR) Gauss-Seidel (GS) method. The fast convergence of SOR GS method depends on the 
proper choice of the relaxation parameter (usually denoted by ) whose values typically lie in the range of (0, 2). But, in 
general, it is very difficult to find the best possible value of  since there is no universal rule for all types of linear systems. 
However, for the linear systems obtained from the discretization of the Poisson’s equation, different relations for the optimum 
value of have been proposed in the literature. Such relations usually depend on the step size or eigenvalues of A. However, 
in practice, there are many factors such as the boundary conditions, structure of coefficient matrix A and the column vector B, 
the forcing function, the error tolerance etc., which effect the and convergence behavior of SOR GS method. Therefore, this 
research is aimed at the analysis of the effect of the different factors on relaxation parameter of SOR GS method. To achieve 
this goal, the convergence behavior of solution is examined by varying the values of increment dx along x-axis, increment dy 
along y-axis; the left, right, top and bottom boundary conditions; the forcing function f, the length L of domain, the width W of 
domain and the error tolerance tol. The overall parametric analysis reveals that the feasible values of  fall within the 
interval [0.4 1.8]. 
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INTRODUCTION  
The systems of linear algebraic equations arise from the 

modeling of many scientific and engineering problems. In 

practice, the linear systems consisting of few variables are 

simple to solve by analytical methods but in case of the large 

number of unknowns the numerical methods are more 

efficient than analytical methods. Numerical methods work 

iteratively by starting from initial guess and update the 

solution in each step until the predefined error tolerance is 

achieved. A comprehensive overview of different iterative 

methods used to solve the linear systems of algebraic 

equations and their theory can be referred in [1-2]. The SOR 

Gauss Seidel GS method is a classical iterative method 

developed by [3] for the purpose of solving linear systems 

automatically on digital computers. The speed of 

convergence of SOR GS depends on the relaxation parameter 

 but it is very difficult rather impossible to compute its 

best possible value in advance. If  the SOR GS method 

simplifies to the conventional Gauss Seidel method. A 

theorem stated by [4] shows that SOR GS fails to converge 

if is chosen outside the interval Frequently, some 

heuristic estimate is used, such as

 where  is the mesh spacing of the 

discretization of the underlying physical domain [5]. For 

some specific model problems such as Poisson's equation the 

following formula gives the optimum value of , 

,   (1) 

where h = 1/(N + 1) is the mesh spacing. The exact 

formulation of Eq. (1) is demonstrated by [6]. Another 

approximation such as given below, 

,  (2) 

is worked out by [7] that involve the Taylor expansion of sine 

function. A comprehensive study was done by [8] to 

demonstrate and test the feasibility of applying Eq. (1) and 

Eq. (2) on 1D, 2D, 3D and d-D Poisson's equation discretized 

by finite difference method. They proved some fascinating 

results for the model problem and attempted to find the 

optimum values of relaxation parameter.  

It was also shown by [9] that if and are chosen such 

that . Another relation was proposed by 

[10] by using the idea of lattice points that is the over-

relaxation parameter  can be tuned to optimize the 

convergence if 

                            (3)      

Where L is the number of lattice points in the x or y 

directions.  

For a 2-cyclic, consistently ordered, real symmetric, positive 

definite matrix A [11] pointed out that finding the optimum 

over-relaxation parameter  is an important and often a 

difficult part of the problem. They suggested that only the 

spectral radius (A) of the associated Gauss-Seidel iteration 

matrix A is needed to determine the optimum parameter . 

When (A)   is close to unity, small changes in the estimate 

for (A)  can drastically effect the rate of convergence of 

the SOR iterations and, thus an accurate estimate of  

is needed.  [12] proved an optimal result for SOR applied to 

matrices with so-called property A, consistent ordering, and 

positive real eigenvalues of . Given an maximal 
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eigenvalue  of the undamped Jacobi iteration matrix 

(  is guaranteed by the assumptions in 

this case), the optimal damping factor for SOR is 

                           (4)   

Which result a convergence rate of . Note 

that approaches 2 when . 

A similar relation for  was worked out by [13] for a 

symmetric and positive definite matrix A.  If it is known that 

all the eigenvalues  of A are real, and lies in the symmetric 

interval , where is the spectral norm of 

A then he best choice of is given by  

                                                          

                                       (5) 

Many more optimum relations for  can be found in 

literature with more complexity for example [3, 14-15]. 

However, most of them depend only on mesh spacing, 

eigenvalues or lattice points and do not include the effect of 

other important factors involved in the model. Therefore, this 

paper is devoted to evaluate the effect of the mesh spacing 

parameters dx along x-axis and dy along y-axis; the left, right, 

top and bottom boundary conditions; the forcing function f, 

the length L of domain, the width W of domain and the error 

tolerance tol on the SOR parameter. 

 

METHODOLOGY: 
In order to analyze the effect of the different parameters on 

the SOR GS method; a 2D Poisson's equation with Dirichlet 

boundary conditions is described as model problem as 

follows: 

   (6) 

or for 2D case:  

         (7) 

The geometric dimensions and boundary conditions are 

shown more clearly in the following figure. 

 
Figure 1.  Poisson’s equation applied on a unit square with 

boundary conditions 

 

The output variable u may relate to any physical phenomenon 

but in this study the distribution of steady state temperature in 

a rectangular metallic plate is considered. The next step is to 

discretize Eq. (7) by using the central finite difference 

method as given below:  

, (8) 

where h and k are the increment size; i and j are the indices of 

discrete mesh points along x and y axes respectively. Figure 

(2) exhibits a typical mesh with boundary conditions applied 

on all four sides of the plate.

 
Figure 2. Discretized domain indicating 5x5 mesh with 4x4 

interior unknowns 

In particular case as shown in Figure (3) when the indices i 

and j are set as i=1, 2, 3, 4, 5 and j=1, 2, 3, 4, 5 in Eq. (8) the 

following system of linear equations is obtained:  

max
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Where and  are the Dirichlet boundary conditions. 

Equation (9) is further simplified to obtain the system matrix 

A, the unknown values of dependent variable u and the 

column vector B. The linear system is represented in standard 

matrix equation  as shown by the following Eq. (10):

 
 

where . Once the system matrix A and the 

column vector B have been obtained then the SOR Gauss-

Seidel [1, 16-17] method with the relaxation parameter  can 

be applied as follows; 

  (11) 

Equation (11) computes the numerical solution of (7) at 

interior nodes denoted by . The values are reshaped for 

consistency to the domain. For the above particular case 

when f(x,y)=0 the numerical simulation is shown in the 

following figure for testing purpose.  

 
Figure 3. Numerical simulation for the dimensions and 

boundary conditions given in the figure (2). 

For the more general case, a concise MATLAB programme 

was written that automatically transforms the Eq. (6) into the 

finite difference schemes and then generates the sparse matrix 

A the column vector B for any dimensions of computational 

domain with varied boundary conditions, forcing function 

and error tolerance. The parametric analysis with effect on 

the convergence behavior in relation to the SOR parameter is 

discussed in the following Section.   

 

RESULTS AND DISCUSSION 
In order to analyze the convergence behavior of numerical 

solution of Eq. (11) the different working parameters were 

changed and the number of iterations were noted at a fixed 

value of SOR parameter . The process was repeated for 

 
First of all the effect of mesh spacing parameters h=dx and 

k=dy was analyzed for   and the 

results are given in Figure 4. The analysis reveals that for 

relatively large mesh size the SOR method converges fast as 

compared to small mesh size. The number of iterations drops 

down as the values of  increases but when   again 

the number of iterations get increasing. However, for some 

values of dx=dy the converging iterations remain constant in 

a subinterval . This behavior of convergence shows 

that there is optimum region for the values of   which 

provides the numerical solution in minimum number of 

iterations. The results were also obtained for unequal mesh 

spacing in two different ways; first dx was set fixed and dy 

was varied and then dy was set fixed and dx was varied the 

results of this setting are exhibited in the Figures (5-6). It is 

clear form the figures that the convergence of SOR method  
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remain constant after , however for almost small 

difference in dx and dy the method converges fast.  

 
Figure 4. Variation in the SOR parameter and converging 

iterations at equal step sizes along both the axes (x and y) 

 
Figure 5. Variation in the SOR parameter and converging 

iterations at unequal mesh size along the axes (x and y) 

 

 
Figure 6.  Variation in the SOR parameter and converging 

iterations at unequal step sizes along the axis (x and y) 

 

Similarly, the effect of all four boundary conditions applied 

on domain and the forcing function f is investigated by 

varying their values at fixed  and the outcomes are shown 

in Figures (7-11). It was found that there is not much 

variation in the convergence behavior in terms boundary 

conditions and forcing function but the analysis exposes that 

for most of the cases the optimum values of  lies in the 

interval . 

 
Figure 7.  Variation in the SOR parameter and converging 

iterations at different values of top boundary condition a. 

 

 
Figure 8.  Variation in the SOR parameter and converging 

iterations at different values of bottom boundary condition b. 

 
Figure 9.  Variation in the SOR parameter and converging 

iterations at different values of left boundary condition c. 
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Figure 10.  Variation in the SOR parameter and converging 

iterations at different values of right boundary condition d. 

 

 
Figure 11.  Variation in the SOR parameter and converging 

iterations at different values of forcing function f. 

 

The effect of the domain dimensions and error tolerance have 

also been analyzed and the results are depicted in Figures 

(12-14). It can be seen from the figures that the change in 

domain dimensions do not highly effect the convergence 

behavior which remain constant after , but the error 

tolerance appears more sensitive in terms of . As the error 

tolerance increases the number of iterations also increases 

significantly. Although, there is an optimum interval for the 

values of  that is . Figur (15) gives an 

overall analysis of the effect of different parameters on SOR 

parameter and convergence. The minimum effects from the 

Figures (4-14) are selected and it is observed that the large 

difference in the mesh spacing parameters and the error 

tolerance are more sensitive. Also, in most of the cases the 

optimum convergence may be achieved when . 

 
Figure 12. Variation in the SOR parameter and converging 

iterations at the different length size  L of domain. 

 

 
Figure 13.  Variation in the SOR parameter and converging 

iterations at the different width size W of domain. 

 

 
Figure 14.  Variation in the SOR parameter and converging 

iterations at the different error tolerance 
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Figure 15.  The overall simultaneous variation in SOR 

parameter and iterations at different working parameters. 

 

CONCLUSION 
In this paper a 2D Poisson equation with constant Dirichlet 

boundary conditions and a constant forcing function was 

considered. The governing equation was discretized by using 

finite difference method and solved by SOR Gauss Seidel 

method to simulate the steady state temperature distribution 

in a rectangular metallic plate. The objective was to analyze 

the effect of the different working parameters involved in the 

numerical solution in relation to SOR parameter. The whole 

methodology was implemented by writing a MATLAB 

program and the results were obtained by varying the 

working parameters in SOR method. The overall analysis has 

revealed that the mesh spacing parameters and the error 

tolerance are more sensitive in relation to SOR parameters. 

For the particular problem solved in this study the optimum 

values of SOR parameter lies in the interval [0.4, 1.8]. The 

outcomes of this study provide directions for the optimization 

of SOR parameter where the empirical relations may be 

formulated for more general cases with variable boundary 

conditions, variable forcing function and variable domain 

dimensions.   
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