
Sci. Int.(Lahore),29(2),435-445,2017 ISSN: 1013-5316; CODEN: SINTE 8 435

March-April

PERFORMANCE ENHANCEMENT OF DIGITAL COMMUNICATION USING
REED SOLOMON CODES

Yasir Hafeez Khan, Muhammad Riaz and Anas Bilal
School of Information Technology, University of Lahore, Islamabad Campus Islamabad, Pakistan.

yasirhkhan@yahoo.com, mriaz77@gmail.com, and chanasbilal@gmail.com

 ABSTRACT: In digital communication, when data is transmitted from one end to another, there is a probability that the

received data may be corrupted by errors when received. The rate at which error occurs is called bit error rate. Errors are

induced in transmission where noise or any sort of interference is present. These errors need to be corrected in order to have

reliable transmission and this is done by the error control coding. A comparison of transmission of data with and without error

control coding is presented. For error correction, Reed Solomon codes have been used. Complete simulation has been done in

MATLAB. Experimental results show that the data transmitted using Reed Solomon codes provides a far better result as

compared to the data transmitted without applying error correction code.

Keywords: Error Control Coding(ECC),Automatic Repeat Request (ARQ) ,Forward Error Correction (FEC),Bit Error Rate (BER),Reed

Solomon (RS), Additive White Gaussian Noise(AWGN) ,Galois Field (GF),Signal to Noise Ratio(SNR),Low Density Parity Check(LDPC).

.

1. INTRODUCTION
Error Control Coding has rapidly grown since past few

decades. It is a common field applied everywhere, but only a

few know what actually error control coding is. It is not

wrong to quote that this proper knowledge about this field is

a requirement for any person engaged in designing or

inventing a communication system.

Error Control Coding comes under information theory which

is a sub branch of applied mathematics. The main concepts

for information theory were introduced by Claude Shannon.

He described that if the information rate of a given code does

not exceeds the capacity of the channel, on which the

information is to be transmitted, then there exist a coding

technique that allows us to send information with a low error

rate [1]. According to this concept, it is possible to transmit

information on a very low error rate through a noisy or

unreliable channel.

Before the publication of Shannon’s famous paper, it was a

perception amongst scientists that noise induced errors in the

data when the data is transmitted [2]. Shannon established the

fact that noise only limits the rate of transmission not the

error probability. He explained that there is a capacity factor

for every channel in the world. This capacity factor is

determined in bits per second. He further explained that error

free transmission is very much possible provided the

transmitted data, i.e. the transmission rate, is kept less than

this capacity factor.

Shannon’s work was just theoretical. He described the facts

but didn’t implement them. After the evolution of Shannon’s

facts, in 1950s communication scientists and researchers

engaged in finding schemes and codes that would implement

Shannon’s facts that is they started finding ways to transmit

data with minor chances of error. The research was not

fruitful in its advance stages. Observing this, in 1960 the

whole team involved in this research divided up in two

groups. The people having command over algebra were in

one group and the people having command over probability

were in the other group. The first group was concerned in

identifying with a specific class of codes which was known as

block codes. The other group with probability scientists

considered the encoding and decoding as a random process.

As time passed the results were fruitful. Probability scientists

succeeded in finding a class of codes known as convolution

codes. After getting familiar with this class of codes,

probability scientists were able to design very powerful

decoders for convolution codes. The groups were reunited in

1970s and this resulted in introducing a number of powerful

and efficient decoding algorithms were invented. The

practical implementation of these decoders however took

more time and finally in 1981, they were implemented.

 Figure 1: Digital Communication System [3]

mailto:yasirhkhan@yahoo.com
mailto:mriaz77@gmail.com
mailto:chanasbilal@gmail.com

436 ISSN: 1013-5316; CODEN: SINTE 8 Sci. Int.(Lahore),29(2),435-445,2017

March-April

The block diagram [3] shows the basic components of a

digital communication system. Error control coding has

numerous applications. There are a large number of fields

where error control coding is considered to be playing a vital

role in producing a reliable communication [4].

The main functions of error control coding are;

 Reduces the occurrence of undetected errors

 Reduces the overall cost of communications systems

 Secures the transmitted data

 Eliminates interference

Reducing the occurrence of errors was the main function of

ECC. Today this is effectively done with the help of

numerous error coding schemes. On the other hand cost of an

overall communication system is reduced as error control

coding prevents the repeated transmission of the same data

and thus saves bandwidth which is the most precious

component of any communication system. It also helps in

making the transmission secure and reduces interference.

Interference is a serious problem as spectrum becomes

extensively packed with a number of users.

It is important to note that the facts and laws defined by

Shannon depend upon whether the channel is power limited

or bandwidth limited. For instance a satellite in deep space

has extensive bandwidth, but limited power. So it comes

under the category of power limited. On the other hand

simple telephone channels have more power as compared to

bandwidth allotted to them. So they come under the category

of bandwidth limited.The introduction to error control coding

by Shannon in 1948 was just theoretical. But today we find

the successive implementation of Shannon ideas in almost

every field of communication. It is due to the richness and

importance of Shannon’s theory that today we are able to

communicate efficiently over long distances.

Without any doubt, reliable data transmission is impossible

without using error correction schemes. The need of error

control coding has increased with the innovations like digital

cellular telephony and digital television, etc. It is absolutely

correct to say that with the passage of time, this need would

get even more pervasive[5].

Once an error is detected, there are two methods for moving

further ahead. These methods are;

 Automatic Repeat Request (ARQ)

 Forward Error Correction (FEC)

1.1 Automatic Repeat Request

As the name itself suggests, in ARQ, the receiver after

detecting the error demands the transmitter to resend the data.

ARQ works on the concept of acknowledgements (ACKS)

that are sent by the receiver exhibiting that the data has been

received correctly. If the transmitter doesn’t get an ACK for a

particular message, it commences retransmission. ARQ is

divided into three types of protocols;

 Stop and Wait

 Go Back N

 Selective Repeat

In Stop and Wait, a single frame is transmitted by the

transmitter. After receiving acknowledgement for that

particular frame, the transmitter transmits the next frame in

the queue. If ACK is not received in a particular time period,

the data is retransmitted. In Go Back N, the transmitter does

not wait ACK for every single frame. When a particular

frame undergoes error, the receiver discards that particular

frame and all succeeding frames and regards them as out of

order. A time comes when transmitter realizes that ACKS are

not being received after a particular frame. So it goes back N

frames and commences retransmission. In Selective Repeat,

unlike Go Back N, out of order packets are not discarded and

the timed out frames are retransmitted by the transmitter.

1.2 Forward Error Correction

FEC is the most used approach in error control coding. In this

technique, the sender adds parity or redundant bits to the

original data .On encountering an error, the correction is

performed by the receiver itself using the parity bits. Forward

error correction is also referred as channel coding. FEC is

divided into two major categories;

 Convolution Codes

 Block Codes

1.2.1 Convolution Codes

In this class of codes, the output of the encoder is in the form

of encoded sequence that is produced from an input

information sequence which means a sequence of message is

transformed into a sequence of code. It is important to note

that these kinds of encoder possess a memory. The output of

the encoder is not just dependent on the input given in that

particular time instant, but it is dependent on previous inputs

as well. The output of the encoder is given by ‘n’ at a

particular ‘k’ input and ‘m’ previous inputs. Thus a

convolution code is represented by where ‘m’

is also referred as the encoder’s memory and ‘n’ and ‘k’ are

normally small integers with k<n. In order to achieve alow

error probability, memory ‘m’ must be large.[6]

1.2.2 Block Codes

In the nomenclature of information and coding theory block

codes is category of error correcting codes which works on

the principle of encoding the data in the form of blocks. The

block of the message is converted into a block of code. This

class of codes includes Reed Solomon codes, Hamming

codes etc. These codes are also lying under the class of linear

codes and therefore are also referred as linear block codes. In

block codes, the digital message to be transmitted is grouped

into blocks of k bits. At the transmitting end, the encoder

takes the complete block as an input and makes it a code

word by adding parity bits to it. These parity bits, added by

encoder, are also known as redundant bits. At the receiving

end, the decoder works on the code word and removes the

parity bits and obtains the original message transmitted by the

sender. As the parity bits do not hold any message

information, so they are discarded. All codes working on this

principle are called block codes and are represented

by .

1.3 Reed Solomon Codes

Reed Solomon codes are error correcting codes proposed by

Irving Reed and Gustave Solomon in 1960. This class of

codes possesses great power and utility. RS codes find

applicable in many fields, for instance, compact disc players,

high speed modems, satellite communications etc.

A block of data is acquired by the RS encoder that adds

redundant bits to the digital data before transmitting it.

During transmission of the data, errors may arise due to

Sci. Int.(Lahore),29(2),435-445,2017 ISSN: 1013-5316; CODEN: SINTE 8 437

March-April

certain reasons. At the receiving end, the RS decoder tries to

spot the errors and then further tries to correct them in order

to obtain the original data that has been transmitted by the

sender side. It is important to note that the error correction

capability of RS code depends upon code’s characteristics ,

i.e. the parameters set up for the code.

The detail of the above mentioned parameters is described as

the input of RS encoder is ‘k’ data symbols where each

symbol is constructed of ‘m’ bits. When the encoder adds the

parity symbols to the ‘k’ data symbol, the complete symbol

code word (i.e. original data and the addition of parity bits) is

represented by ‘n’. The total number of parity symbols is n-k.

In order to find the error correction capability t of RS code

we make use of the formula 2t=n-k.

DATA PARITY

 <------------------------n----------------------------->
Suppose we intend to transmit a ‘k’ symbol message where

‘k’ is 223 and error correcting capability (t) is 16. Then n will

be calculated as;

 =255

As the value of t is 16, this means that n=k+2t should assure

reconstruction of the message at the receiving end if the total

numbers of corrupted symbols are less than t. According to

this fact, in the scenario described above, where k is 223 and

n is 255, the code is capable of correcting 16 corrupted

symbols of every 255 symbol packet[7].

Detailed description of RS codes is described in later sections

of the report

.

A typical RS system can be shown as;

Figure 2: Typical Reed Solomon Architecture

2.Methodology

2.1 Galois Field

Galois field plays a very important role in encoding and

decoding procedures of RS algorithm. It is named for a

French mathematician Evariste Galois. Galois field is a finite

field. For any prime number p, there is GF (p), i.e. Galois

field that consists of precisely p elements. Galois Field is

categorized into two types; binary field GF (2) and extended

Galois Field GF (2^m)

Binary Galois Field

As the name suggest, binary Galois field contains 0 or 1. It is

defined as GF (2) = {0, 1}. The addition of two numbers in

the binary field will always result in the number related to the

set. Similarly the multiplication will also result in the number

related to the set. It uses the modulo 2 addition.

Table 1 below shows the addition in binary Galois field. It is

evident that the result of addition always remains within the

set.
Table 1: Addition for GF (2)

+ 0 1

0 0 1

1 1 0

Table 2 below shows the multiplication in binary Galois field.

Again we can see that multiplication result always remains

within the set.

Table 2: Multiplication for GF (2)

* 0 1

0 0 0

1 0 1

2.1.1 Polynomials in Binary Galois Field

When it comes to polynomials in binary Galois field, it is

important to note that every binary number can be stand for a

polynomial. A polynomial up to power n can be represented

as;

Suppose if we want to generate a polynomial for the binary

number 101110001. In this case value of n is 8 which mean

that the above equation goes up to 8. The multiplication is

shown in the table below;
Table 3: Binary to Polynomial Conversion

1 0 1 1 1 0 0 0 1

The above multiplication results in the conversion of binary

to polynomial which is given by;

2.1.2 Multiplication of Polynomials in Binary Galois Field

For multiplication of two polynomials consider any two

polynomials. Suppose the first polynomial is
 and another polynomial . Multiplication in finite

fields uses AND logic operation. So multiplying these two

polynomials results in;

(*()=

RS

Encoder

Communication

channel

RS

Decoder

Noise

Sender Receiver

438 ISSN: 1013-5316; CODEN: SINTE 8 Sci. Int.(Lahore),29(2),435-445,2017

March-April

(*()=

Addition uses XOR logic operation so the even numbers of

terms are canceled out.

2.1.3 Addition of Polynomials in Binary Galois Field

For addition of two polynomials consider any two

polynomials. Suppose three polynomials ,

 and . Now adding these three polynomials

results in;

()+()+()=
 + +

()+()+()=

2.1.4 Extended Galois Field

There is also a possibility of extending GF (p) up to p^m

elements, where m is a positive integer. This extension results

in GF (p^m). As the field is extended, there is addition of

some exclusive elements other then 0 and 1. These elements

are represented by α. Now power of α can represent each non

zero in the extended field GF (2^m). F, an infinite field, is

constituted by initiating with elements {0, 1, α}. Additional

to this more elements are generated by multiplying α with

every last entry[8]. This gives;

 { } { }

In order to acquire finite set of elements of GF (2^m) from

above mentioned expression, there is a compulsion of

imposing a condition on F so that it only holds 2^m elements

which should be closed under multiplication. This condition

characterized by;

By making use of the above mentioned polynomial

constraint, any field element that possess power greater than

or equivalent to , can be trimmed down to powerless

then the factor . This is shown by;

Now using the above mentioned expression, we can construct

a finite sequence from an infinite sequence. We represent this

newly constructed finite sequence with F* and is given by;

 { }

 { }

Thus now the elements for the field GF (2^m) will be given

by;

 { }
As we know that the extended field is not restricted to just

two numbers so we consider an example GF (4) = {0, 1, 2,

3}. Table 4 shows the addition of this example.

Table 4: Addition for GF (4)

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

Table 5: Multiplication for GF (4)

Table 5 shows the multiplication for the same example.

We can also represent GF (4) in binary by performing a

conversion. The above example can be performed again using

binary conversion. Table 6 shows addition in binary

representation and Table 7 shows the multiplication in binary

representation.
Table 6: Addition in Binary Representation

+ 00 01 10 11

00 00 01 10 11

01 01 00 11 01

10 10 11 00 01

11 11 10 01 00

Table 7: Multiplication in Binary Representation

* 00 01 10 11

00 00 00 00 00

01 00 01 10 11

10 00 10 11 01

11 00 11 01 10

We also need the polynomials representing the binary

conversions in Table 6 and Table 7. These addition and

multiplication of polynomials are shown in Table 8 and Table

9 respectively.
Table 8: Addition in Polynomial Representation

+ 0 1 x x+1

0 0 1 x x+1

1 1 0 x+1 x

x x x+1 0 1

x+1 x+1 x 1 0

Table 9: Multiplication in Polynomial Representation

* 0 1 x x+1

0 0 0 0 0

1 0 1 x x+1

x 0 x x+1 1

x+1 0 x+1 1 x

+ 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

Sci. Int.(Lahore),29(2),435-445,2017 ISSN: 1013-5316; CODEN: SINTE 8 439

March-April

2.1.5 Primitive Polynomials

Primitive polynomial characterizes the finite fields GF (2^m)

which are required for Reed Solomon codes. There are

conditions needed for a polynomial to be primitive. A

polynomial of degree m is said to be primitive if the smallest

positive integer n for which f(X) divides is n=2m-1. It

is important to note that their division results into a non zero

quotient and a zero reminder. Table 10 lists some important

primitive polynomials.
Table 10: Primitive Polynomials [16]

3.1 Reed Solomon Encoding

Reed Solomon codes consist of symbols which are made of m

bit sequence. The following equation articulates conventional

form of Reed Solomon (RS) error correction scheme.

. The polynomial generation in RS algorithm is given by;

The degree of polynomial generator and the number of parity

symbols both are equivalent. RS codes are basically a subset

of Bose Chaudhuri Hochquenghem (BCH) codes. The earlier

mentioned correlation between polynomial generator and the

number of parity symbols is the same for BCH codes as well.

Given that the degree of polynomial generator is 2t, it is

essential that there must be 2t powers of α which are also the

roots of the polynomial. The roots of g(X) are referred as α,

α
2

up to α
2t

. However it is not compulsory to initiate the root

α as initiating with any power of α is promising[9]. Taking an

example of (7,3) error correcting Reed Solomon code. The

according to the above mentioned equations the polynomial

generator in terms of its roots would be given by;

Moving from least order to highest order and converting

negative signs to positive, as +1 = –1 in binary field, we

come up with the following equation for g(x);

3.1.1 Systematic Encoding

Since RS codes are cyclic, so encoding in systematic form is

similar to binary encoding process. RS coding is called

systematic because the original data is not changed but only

parity bits are added to it. A message polynomial, referred as

m(X), is shifted into k stages of codeword in the most right

register. After that an addition of parity polynomial, referred

as p(X), is done by placing it into n-k stages in the most left

register. Now m(X) is multiplied by X
n- k

 which results in

manipulating m(X) algebraically in such a way that it is

shifted right with respect to n-k positions. Now division

between X
n- k

 m(X) and g(X) is done which gives;

In the above equation q(X) is quotient polynomial and p(X) is

remainder polynomials. U(X) represents the codeword

polynomial and is given by;

The procedure mentioned above could be more elaborated by

encoding the following symbol messages.

 ⏟

 ⏟

 ⏟

For RS code (7,3) with the generator polynomial equation

described earlier, multiplying the message polynomial α
1
+ α

3

X+ α
5
 X

2
 by X

n- k
= X4 results in α

1
X

4
+ α

3
X

5
+ α

5
 X

6
. Now

the next step is division, as described earlier, which takes

place between the shifted message polynomial with the

polynomial generator α
3
+ α

1
 X+ α

0
 X

2
+ α

3
X

3
+ X

4
.

Table 11: Rules for Polynomial Addition

440 ISSN: 1013-5316; CODEN: SINTE 8 Sci. Int.(Lahore),29(2),435-445,2017

March-April

Table 12: Rules for Polynomial Addition

It is important to note that the polynomial division is more

complex as compared to its binary equivalent. This is because

the required operations have to follow certain rules which are

presented in Table 11 and Table 12. The division results in

the following remainder or parity polynomial.

Then, the resulting polynomial can be written as follows:

In order to encode a three symbol sequence in systematic

shape in accordance with (7,3) Reed Solomon codes

illustrated by polynomial generator g(X), a linear feedback

shift register (LFSR) is required. As described earlier, the

LFSR also works on the principle of moving from least to

highest order. In this encoding procedure, the (7, 3) Reed

Solomon nonzero code words consists of 2
m

-1 = 7 symbols

where each symbol consists of m= 3 bits. It is important to

note that procedure to be done here is non binary, so that each

stage in the shift register holds a 3-bit symbol.

LFSR consists of two switches referred as switch 1 and

switch 2. Switch 1 is shut down during first k clock cycles

which permit the shifting of message symbols to n-k stage

shift register. Switch 2 is positioned descendent to permit

instantaneous transport of the message symbols directly to an

output register. Once the kth message symbol is shifted to

output register, switch 2 is positioned ascendant and switch 1

is opened. Now parity symbols are transferred to the output

register by n-k clock cycles as a result the shift register

becomes under empty state. At this stage the total numbers of

clock cycles are equal to n and the output register is the

codeword polynomial p(X)+X
n-k

 m(X). Using the same

symbol sequence 010, 110, 111 where the right most symbols

is the early earliest symbol, and the rightmost bit is the first

bit.

Once the third clock cycle is completed, there are four parity

symbols in the register that are α
0
, α

2
, α

4
, and α

6
. Now switch

1 is opened and switch 2 turned in ascendant position and

parity symbols are transferred to output. At this instant the

output codeword i.e. U(X) is given by;

 ∑

Using the above mentioned formula output codeword comes

to be;

As discussed earlier that validating contents of the register in

polynomial case is complex as compared to binary case.

Rules, showed in Table 1 and Table 2, are to be applied here.

It is compulsory that roots of g(X) must be the roots of the

codeword generated by it. This is because a suitable

codeword is given by;

 [16]

As a result a random codeword must yield zero value when it

is evaluated at any root of polynomial generator. Keeping this

fact in mind the earlier mentioned equation

 is simplified by using the following expression;

By above mentioned equation each single term of U(X) will

give following results;

The above calculations exhibits that a codeword calculated at

any root of generator polynomial necessarily gives a zero

value.

3.2 Reed Solomon Decoding

In the start (7, 3) Reed Solomon code was used to encode a

message which ultimately leads to generation of a codeword

polynomial. As the transmission takes place this codeword is

altered and as a result errors are induced at receiver’s end.

Keeping in mind the fact that errors induced during the

transmission should correspond to the code’s error correction

capacity. According to this particular case, where codeword

consists of seven symbols, error e(X) can be given as follows;

 ∑

Assuming a double symbol error we can elaborate the above

equation as;

Sci. Int.(Lahore),29(2),435-445,2017 ISSN: 1013-5316; CODEN: SINTE 8 441

March-April

In simple words we can assume from the above equation that

a data symbol and a parity symbol have been corrupted. To

elaborate more, data symbol is altered with 3 bit error and

parity symbol is altered with 1 bit error where parity symbol

and data symbol are represented by α
2
 and α

5
 respectively.

Now another polynomial is induced here and is named as

corrupted codeword polynomial represented by r(X) which is

actually the sum of error pattern e(X) and transmitted

codeword polynomial U(X). Simply represented as;

As the above equation states that in order to get r(X) we have

to add e(X) to U(X), so adding both expressions give;

Observing the equations we reveal that there are four

unknowns. This means that in order to solve it, we need four

equations. It is important to note that the four so called

unknowns are two error location and two error values.

3.3 Calculation of Syndrome

Now the concept of syndrome plays its role. Basically

syndrome results from the parity check that is executed on

corrupted codeword (r) in order to be certain about it validity.

If r is a valid, i.e. it is a member of valid code word set, then

syndrome value (S) must be equal to zero. On the other hand,

if r is not a member of valid code word set, the value of S

must be non zero. Basically syndrome (S) consists of n-k

symbols i.e. Si have a set of values from i=1 up to n-k. So

there will be four symbols in each single syndrome vector in

our case i.e. (7,3) Reed Solomon code. The syndrome

calculation can be done by the fact that;

The above expression, we can conclude that each U(X) is a

multiple of g(X) which is the generator polynomial. Keeping

the fact that U(X) is a multiple of g(X) it is compulsory that

roots of both polynomial expressions, U(X) and g(X), must

be same. As discussed earlier that r(X) = U(X) + e(X) so we

should get a zero value for a valid code word when r(x) is

evaluated at every single root of g(X). If a non-zero value is

obtained, then it is verified that it is not a valid code word.

Syndrome is computed by;

 |

Using the above expression, syndrome computation is done

as follows;

The above calculation suggests that the message received

holds errors since all syndrome values are not equal to zero.

The calculation done above can also be verified by another

procedure. This procedure is to relate roots of g(X) with the

error polynomial e(X). The term ‘relate’, used above,

means that evaluating e(X) at the roots of g(X). This

evaluation must give the same syndrome results when r(X) is

evaluated at the roots of g(X). This calculation is done as

follows;

 |

 |

Using the above expression, syndrome computation is done

as follows;

Notice that the above syndrome values obtained by

evaluating e(X) at the roots of g(X) are the same as the

syndrome values obtained when r(X) was evaluated at the

roots of g(X).

3.4 Error Location and Error Values

As the syndrome is computed, we know have to find error

location and error values. First we will systematically find

locations of the errors. Once locations have been found out,

we will go for the error values.

3.5 Error Location

Assume that there are v in the code word at the locations

represented by . Assuming this, the error

polynomial will be defined as;

In the above expression, indices 1, 2 up to v correspond to

1st, 2nd up to vth errors. On the other hand, the index j

corresponds to error location. Now there is need to determine

every single error value and its location in order to correct the

code. Error value is represented by ej1 and its corresponding

error location is represented as X
 j1

. βl=α
j1

 is an error locator

number to be used here. Now the syndrome symbols are

acquired by replacing α
i
 into r(X). This would be given as

follows;

442 ISSN: 1013-5316; CODEN: SINTE 8 Sci. Int.(Lahore),29(2),435-445,2017

March-April

As discussed earlier that as the syndrome gives a non zero

value, it is evident that error is present. Now it is required to

find the error location. Here another term is introduced which

is known as error locator polynomial and is represented by

σ(X). This would be given as follow;

The roots of error locator polynomial come out to

be
⁄

⁄

⁄ . Now a system of equations can be

formed involving syndrome and error locator polynomial.

This is done using modelling techniques and the system is

givenby;

Assuming the (7,3) Reed Solomon code we can express the

model as;

[

] [

] [

]

[

] [

] [

]

Now in order to find coefficients we have to take inverse for

the above system. The inverse of a matrix is given by;

Now finding the determinant to be used in above

expression;

 [

]

Finding the cofactor to be used in inverse calculation;

 [

] [

]

Finally, using determinant and cofactor, inverse would be

given by;

 [

]
[

]

 [

]

 [

] [

]

The above calculated inverse could be verified by a simple

matrix calculation law that multiplication of a matrix with its

inverse results in an identity matrix of the same size. So in

order to confirm our result;

[

] [

] [

] [

]

As the multiplication results in a 2×2 identity matrix, hence it

is verified that inverse is accurately calculated.

Now refreshing the earlier discussed equation;

[

] [

] [

]

Finding the error locations started by simplifying the

coefficients of the σ(X).

[

] [

] [

] [

] [

]

Where σ(X) is represented as;

As we know that the roots of σ(X) are the reciprocals of the

error locations. From this fact it is evident that if roots are

found out, we will get to know error location. An important

point to be noted here is that σ(X) = 0 indicates an error.

Keeping these points in mind, following calculations are

computed to locate an error;

In the above calculated expressions, .

This means that these both locations indicate an error. To be

more elaborate, we can say that one root exits at 1/βl = α
3
.

Thus, βl = 1/α
3
 = α

4
 and another root exits at 1/βl′ = α

4
. Thus,

βl′ = 1/α
4
 = α

3
, where l and l′ refer to the 1

st
, 2

nd
 up to vth

error. As we have concluded that there are two symbol errors,

so e(x) can be written as;

Concluding the above explanation we can say that we have

come across two errors at α
3
 and α

4
.

Error Value

Once the error location is found out, next part is to find error

values. Which means now we have to find the error values ej1

corresponding to the locations β1 = α
3

and β2 = α
4
 It is worth

noting that j corresponds to the error location and l

corresponds to lth error. In order to evaluate error values we

will use the equations for syndrome which were calculated in

the earlier section of decoding process. It is important to note

that here we can make use any of the four equations.

Rewriting the above equations in matrix form:

[

] [

] [

]

[

] [

] [

]

As we are to find out e1 and e2 so inverse would be

calculated here using the same formula applied earlier i.e.

finding cofactor and determinant and then dividing them to

get inverse. This calculation is done as follow;

 [

]
[

]

[

]

 [

] [

] [

]

 [

] [

]

Sci. Int.(Lahore),29(2),435-445,2017 ISSN: 1013-5316; CODEN: SINTE 8 443

March-April

Using the above calculated inverse error values come out to

be;

[

] [

] [

] [

] [

]

After finding error location and error values we can deduce

estimated error polynomial that is represented by ̂ . This

estimated error polynomial is given by;

 ̂

Applying the same calculation earlier used but replacing the

term e(X) with ̂ we have;

 ̂ ̂ ̂

Where

And

 ̂

Adding both terms yields;

 ̂

As the message symbol is composed of k=3 right most

symbols so the message that we decoded from the above

expression comes out to be;

 ⏟

 ⏟

 ⏟

The decoded message is precisely the same that was earlier

selected during the encoding process.

4.Implementation

The design of a Reed Solomon encoder and decoder in

MATLAB will be discussed in this chapter. RS (255,223)

code is designed in MATLAB and output is taken and

analysed. In RS (255,223) code, every code word constitutes

of 255 code word bytes. Out of these 255 bytes, 223 bytes are

the original data and the rest 32 are for parity.The main

purpose of implementing in Reed Solomon codes in

MATLAB is to understand the basis working of this

technique and to understand that how signal transmission

occurs. During transmission if error occurs, then what happen

to transmitted signal, capability of decoder, to what level

decoder can detect the errors and error correction capability

of the decoder. That RS code will be able to correct up to 16

symbol errors out of 255 symbols automatically. Maximum

code word length for a RS code is given by the formula;

As in our case m is 8 so,

 = 255 bytes

For error correction capability, we make use of the following

formula;

As in our case n=255 and k=223 so,

Once the parameters have been set, we generate transmission

data bits applying the random function by using code length

and input bits. Now we convert these data bits to data

symbols using binary to decimal convertor which is a

MATLAB built in function. At this point we have obtained

our message symbols to be transmitted. Now we apply Galois

field function to these message symbol that is necessary for

RS encoding procedure. Then the converted message symbols

which are served as an input to encoder.

After the modulation process in completed, we induce an

SNR vector in order to calculate bit error rate on these values

of SNR. We induce a noise signal using ‘rand’ function and

the symbol of random noise is added to encoded data. This

noise signal once added to the transmitted signal, we name it

as received signal. This procedure gives a look that the data

travelled on channel and when received at the other end, it

has induced errors in itself due to noise and other processes.

Now the received signal with the noise is demodulated and

then bits in errors are calculated. BER is found by using the

formula;

Now the data with the addition of noise itself becomes the

input of RS decoder. RS decoder can remove the error from

2t symbols from the data given at its input.

The decoder function is applied to convert the original

sequence by removing errors using the redundant or parity

bits added by the encoder and we receive the same message

signal which was transmitted in the beginning

5.RESULTS AND DISCUSSIONS

Now the results obtained is a two dimensional graph which

plots the bit error rate as a function of signal to noise ratio. To

be more elaborate we can say that the plot constitutes of bit

error rate on y axis and Eb/No on x axis. Eb/No is actually

energy per bit divided by power spectral density of noise. It is

important to note that energy per bit is defined as the total

amount of energy divided by the total number of bits. Bit

error rate is expressed in power of tens and Eb/No is

represented in decibels.

The considerable point here is that high bit error rate

indicates that more bits are in error. This results in the

performance degradation for any system. So in order to have

efficient performance, bit error rate should be in certain

limits.

Figure 3 shows the results for the simulation of transmission

of data without using any type of coding. Figure 4 shows the

results for the simulation of transmission using Reed

Solomon codes. Now the comparison of both plots in Figure

5 clearly shows that the curve for RS coding is beneath the

curve for without coding. This clearly shows that the bit error

rate is higher when transmission is done without using coding

schemes which ultimately means that more number of bits are

in error. Whereas if we observe the curve for RS coding, we

see that it has a lower bit error rate as compared to the upper

curve which means that when we transmit data using RS

codes, the amount of bits in error is considerably low.

Furthermore, we can also observe bit error rates for

corresponding Eb/No values. For instance at 6 decibels, RS

gives a bit error rate of whereas at the same value of

Eb/No the curve for without channel coding gives a bit error

rate of approximately . This shows a significant

difference between to bit error rates for a same Eb/No.

444 ISSN: 1013-5316; CODEN: SINTE 8 Sci. Int.(Lahore),29(2),435-445,2017

March-April

Figure 3: BER Vs Eb/No without Channel Coding

Figure 4: BER Vs Eb/No for Reed Solomon Coding

From Figure 5 we can also evaluate the coding gain. Coding

gain is referred as the measure in difference between signal to

noise ratio levels between the uncoded and coded systems

require to achieve the same BER level. For instance, in or

case the RS coded system has a bit error rate of at

approximately 7.2 decibels whereas the uncoded system has

the same BER level at approximately 11.2 decibels. So the

coding gain comes out to be 11.2db-7.2db=4db.

Bit error rate is a significant parameter in evaluating any

system’s performance. It evaluates a complete end to end

performance for any system transmitting digital data from

one side to another. The curve plotted for bit error rate

against signal to noise ratio helps the communication

engineers to choose the best alternative for transmission in

terms of reliability. The major reasons for performance

degradation are noise and alteration in propagation paths, in

case of wireless, and in communication these both situations

are regularly observed. So to overcome these situations we

make use of error correction schemes which ensures us a very

much reliable data transmission to a great extent as our

results clearly depicts this point.

Figure 5: Comparison of Both Results

6.CONCLUSION
We presented a comparison of transmitting digital data with

and without using error control coding using MATLAB. For

ECC we implemented Reed Solomon (255,223) code which

constructs 255 symbols of 8 bits each with the error

correction capability of 16 with total. BER curves for both

transmissions were obtained and compared. From the results,

it is very obvious that the BER curve for Reed Solomon code

is healthier as compared to the BER curve of data transmitted

without coding. It was witnessed that for a distinct value of

signal to noise ratio, the bits in error can be found if the total

number of symbols in error is less than the error correction

capability of code. We observed that RS codes are a

dominant and effective class of block codes in the field of

error control coding. In future, one can implement LDPC

codes and can compare results given by RS code with the

results of LDPC codes and can spot the difference between

the two. One can also applydifferent modulation schemes and

can deduce a comparison.

REFERENCES

[1] Claude Shannon, "A Mathematical Theory of Communication,"

The Bell System Technical Journal, vol. 27, pp. 379-423,

October 1948.

[2] Jay M. Jacobsmeyer, "Introduction to Error Control Coding,"

Pericle Communications Company, 2004.

[3] Jorge Castineira Moreira and Patrick Guy Farrell, Essintials of

Error Control Coding. Chichester, England: John Wiley & Sons

Ltd., 2006.

[4] Daniel J. Costello, Hagenauer Joachim, Hideki Imai, and

Stephen B. Wicker, "Applications of Error Control Coding,"

IEEE Transactions On Information Theory, vol. 44, pp. 2531-

2560, October 1998.

[5] Daniel J. Costello and G. David Forney, "Channel Coding: The

Road to Channel Capacity," Proceedings of the IEEE, vol. 95,

pp. 1150-1117, June 2007.

[6] Qinghua Zhao, Pamela Cosman, and Lawrence B. Milstein,

"Tradeoffs of Source Coding, Channel Coding and Spreading in

CDMA Systems," Department of Elictrical and Computer

Enginnering, University of California,.

0 2 4 6 8 10 12 14
10

-3

10
-2

10
-1

10
0

Eb/No (dB)

B
it
 E

rr
o
r

R
a
te

BER vs Eb/N0:Without Channel Coding

0 2 4 6 8 10 12 14
10

-3

10
-2

10
-1

10
0

Eb/No (dB)

B
it
 E

rr
o
r

R
a
te

BER vs Eb/N0:With and Without Channel Coding

With Channel Coding

Withouth Channel Coding

Sci. Int.(Lahore),29(2),435-445,2017 ISSN: 1013-5316; CODEN: SINTE 8 445

March-April

[7] Mahesh Patel, "New Channel Coding Technique to Achieve

The Ultimate Shannon Limit," in National Conference on

Recent Trends in Engineering and Technology, 2011.

[8] Vahid Tarokh, Hamid Jafarkhani, and A. Robert Claderbank,

"Space Time Block Coding for Wireless Communications:

Performance Results," IEEE Journal in Selected Areas In

Communications, vol. 17, March 1999.

[9] G. C. Cardarilli, S. Pontarelli, M. Re, and A. Salsano,

"Concurrent Error Detection in Reed–Solomon Encoders and

Decoders," IEEE Transactions on VLSI Systems, vol. 15, pp.

842-846, July 2007.

[10] Joschi Brauchle and Ralf Koetter, "A Systematic Reed–

Solomon Encoder with Arbitrary Parity Positions," in IEEE,

2009.

[11] William C. Cox, Jim A. Simpson, Carlo P. Domizioli, John F.

Muth, and Brian L. Hughes, "An Underwater Optical

Communication System Implementing Reed-Solomon Channel

Coding," in OCEANS 2008, September 2008, pp. 1-6.

[12] Aqib. Al Azad, Minhazul Huq, and Iqbalur Rahman Rokon,

"Efficient Hardware Implementation of Reed Solomon Encoder

and Decoder in FPGA using Verilog," in International

Conference on Advancements in Electronics and Power

Engineering, Bangkok, 2011.

[13] Peter Trifonov, "Soft-decision decoding of polar codes with

Reed-Solomon kernels," in Thirteenth International Workshop

on Algebraic and Combinatorial Coding Theory, Bulgaria,

2012, pp. 317-322.

[14] N. Sireesha and V. Prasanth, "Iterative Multivariate

Interpolation for Low Complexity Reed-Solomon Codes,"

International Journal of Modern Engineering Research, vol. 2,

no. 5, pp. 3769-3772, September-October 2012.

[15] Parul Gaur, Deepak Gaur, and Aruna Tomar, "N-Byte Error

Correcting and Detecting Code Using Reed Solomon and

Cellular Automata Approach," International Journal of

Research ion Engineering and Technology, vol. 1, no. 3, pp.

511-515, November 2012.

[16] Bernard Sklar, Digital Communications: Fundamentals and

Applications, 2nd ed.: Prentice-Hall, 2001.

