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 ABSTRACT: In digital communication, when data is transmitted from one end to another, there is a probability that the 

received data may be corrupted by errors when received. The rate at which error occurs is called bit error rate. Errors are 

induced in transmission where noise or any sort of interference is present. These errors need to be corrected in order to have 

reliable transmission and this is done by the error control coding. A comparison of transmission of data with and without error 

control coding is presented. For error correction, Reed Solomon codes have been used. Complete simulation has been done in 

MATLAB. Experimental results show that the data transmitted using Reed Solomon codes provides a far better result as 

compared to the data transmitted without applying error correction code. 

Keywords: Error Control Coding(ECC),Automatic Repeat Request (ARQ) ,Forward Error Correction (FEC),Bit Error Rate (BER),Reed 

Solomon (RS), Additive White Gaussian Noise(AWGN) ,Galois Field (GF),Signal to Noise Ratio(SNR),Low Density Parity Check(LDPC). 

. 

1. INTRODUCTION 
Error Control Coding has rapidly grown since past few 

decades. It is a common field applied everywhere, but only a 

few know what actually error control coding is. It is not 

wrong to quote that this proper knowledge about this field is 

a requirement for any person engaged in designing or 

inventing a communication system. 

Error Control Coding comes under information theory which 

is a sub branch of applied mathematics. The main concepts 

for information theory were introduced by Claude Shannon. 

He described that if the information rate of a given code does 

not exceeds the capacity of the channel, on which the 

information is to  be transmitted, then there exist a coding 

technique that allows us to send information with a low error 

rate [1]. According to this concept, it is possible to transmit 

information on a very low error rate through a noisy or 

unreliable channel. 

Before the publication of Shannon’s famous paper, it was a 

perception amongst scientists that noise induced errors in the 

data when the data is transmitted [2]. Shannon established the 

fact that noise only limits the rate of transmission not the 

error probability. He explained that there is a capacity factor 

for every channel in the world. This capacity factor is 

determined in bits per second. He further explained that error 

free transmission is very much possible provided the 

transmitted data, i.e.  the transmission rate, is kept less than 

this capacity factor.  

Shannon’s work was just theoretical. He described the facts 

but didn’t implement them. After the evolution of Shannon’s 

facts, in 1950s communication scientists and researchers 

engaged in finding schemes and codes that would implement 

Shannon’s facts that is they started finding ways to transmit 

data with minor chances of error. The research was not 

fruitful in its advance stages. Observing this, in 1960 the 

whole team involved in this research divided up in two 

groups. The people having command over algebra were in 

one group and the people having command over probability 

were in the other group. The first group was concerned in 

identifying with a specific class of codes which was known as 

block codes. The other group with probability scientists 

considered the encoding and decoding as a random process. 

As time passed the results were fruitful. Probability scientists 

succeeded in finding a class of codes known as convolution 

codes. After getting familiar with this class of codes, 

probability scientists were able to design very powerful 

decoders for convolution codes. The groups were reunited in 

1970s and this resulted in introducing a number of powerful 

and efficient decoding algorithms were invented. The 

practical implementation of these decoders however took 

more time and finally in 1981, they were implemented. 

  

 

 

               Figure 1: Digital Communication System [3] 
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The block diagram [3] shows the basic components of a 

digital communication system. Error control coding has 

numerous applications. There are a large number of fields 

where error control coding is considered to be playing a vital 

role in producing a reliable communication [4]. 

The main functions of error control coding are; 

 Reduces the occurrence of undetected errors 

 Reduces the overall cost of communications systems 

 Secures the transmitted data 

 Eliminates interference 

Reducing the occurrence of errors was the main function of 

ECC. Today this is effectively done with the help of 

numerous error coding schemes.  On the other hand cost of an 

overall communication system is reduced as error control 

coding prevents the repeated transmission of the same data 

and thus saves bandwidth which is the most precious 

component of any communication system. It also helps in 

making the transmission secure and reduces interference. 

Interference is a serious problem as spectrum becomes 

extensively packed with a number of users. 

It is important to note that the facts and laws defined by 

Shannon depend upon whether the channel is power limited 

or bandwidth limited. For instance a satellite in deep space 

has extensive bandwidth, but limited power. So it comes 

under the category of power limited. On the other hand 

simple telephone channels have more power as compared to 

bandwidth allotted to them. So they come under the category 

of bandwidth limited.The introduction to error control coding 

by Shannon in 1948 was just theoretical. But today we find 

the successive implementation of Shannon ideas in almost 

every field of communication. It is due to the richness and 

importance of Shannon’s theory that today we are able to 

communicate efficiently over long distances.  

Without any doubt, reliable data transmission is impossible 

without using error correction schemes. The need of error 

control coding has increased with the innovations like digital 

cellular telephony and digital television, etc. It is absolutely 

correct to say that with the passage of time, this need would 

get even more pervasive[5]. 

Once an error is detected, there are two methods for moving 

further ahead. These methods are; 

 Automatic Repeat Request (ARQ) 

 Forward Error Correction (FEC) 

1.1 Automatic Repeat Request 

As the name itself suggests, in ARQ, the receiver after 

detecting the error demands the transmitter to resend the data. 

ARQ works on the concept of acknowledgements (ACKS) 

that are sent by the receiver exhibiting that the data has been 

received correctly. If the transmitter doesn’t get an ACK for a 

particular message, it commences retransmission. ARQ is 

divided into three types of protocols; 

 Stop and Wait 

 Go Back N 

 Selective Repeat 

In Stop and Wait, a single frame is transmitted by the 

transmitter. After receiving acknowledgement for that 

particular frame, the transmitter transmits the next frame in 

the queue. If ACK is not received in a particular time period, 

the data is retransmitted. In Go Back N, the transmitter does 

not wait ACK for every single frame. When a particular 

frame undergoes error, the receiver discards that particular 

frame and all succeeding frames and regards them as out of 

order. A time comes when transmitter realizes that ACKS are 

not being received after a particular frame. So it goes back N 

frames and commences retransmission. In Selective Repeat, 

unlike Go Back N, out of order packets are not discarded and 

the timed out frames are retransmitted by the transmitter. 

1.2 Forward Error Correction 

FEC is the most used approach in error control coding. In this 

technique, the sender adds parity or redundant bits to the 

original data .On encountering an error, the correction is 

performed by the receiver itself using the parity bits. Forward 

error correction is also referred as channel coding. FEC is 

divided into two major categories; 

 Convolution Codes 

 Block Codes 

1.2.1 Convolution Codes 

In this class of codes, the output of the encoder is in the form 

of encoded sequence that is produced from an input 

information sequence which means a sequence of message is 

transformed into a sequence of code. It is important to note 

that these kinds of encoder possess a memory. The output of 

the encoder is not just dependent on the input given in that 

particular time instant, but it is dependent on previous inputs 

as well. The output of the encoder is given by ‘n’ at a 

particular ‘k’ input and ‘m’ previous inputs. Thus a 

convolution code is represented by               where ‘m’ 

is also referred as the encoder’s memory and ‘n’ and ‘k’ are 

normally small integers with k<n. In order to achieve alow 

error probability, memory ‘m’ must be large.[6] 

1.2.2 Block Codes 

In the nomenclature of information and coding theory block 

codes is category of error correcting codes which works on 

the principle of encoding the data in the form of blocks. The 

block of the message is converted into a block of code. This 

class of codes includes Reed Solomon codes, Hamming 

codes etc. These codes are also lying under the class of linear 

codes and therefore are also referred as linear block codes. In 

block codes, the digital message to be transmitted is grouped 

into blocks of k bits. At the transmitting end, the encoder 

takes the complete block as an input and makes it a code 

word by adding parity bits to it. These parity bits, added by 

encoder, are also known as redundant bits. At the receiving 

end, the decoder works on the code word and removes the 

parity bits and obtains the original message transmitted by the 

sender. As the parity bits do not hold any message 

information, so they are discarded. All codes working on this 

principle are called block codes and are represented 

by       . 

1.3 Reed Solomon Codes 

Reed Solomon codes are error correcting codes proposed by 

Irving Reed and Gustave Solomon in 1960. This class of 

codes possesses great power and utility. RS codes find 

applicable in many fields, for instance, compact disc players, 

high speed modems, satellite communications etc. 

A block of data is acquired by the RS encoder that adds 

redundant bits to the digital data before transmitting it. 

During transmission of the data, errors may arise due to 
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certain reasons. At the receiving end, the RS decoder tries to 

spot the errors and then further tries to correct them in order 

to obtain the original data that has been transmitted by the 

sender side. It is important to note that the error correction 

capability of RS code depends upon code’s characteristics , 

i.e. the parameters set up for the code. 

The detail of the above mentioned parameters is described as 

the input of RS encoder is ‘k’ data symbols where each 

symbol is constructed of ‘m’ bits. When the encoder adds the 

parity symbols to the ‘k’ data symbol, the complete symbol 

code word (i.e. original data and the addition of parity bits) is 

represented by ‘n’. The total number of parity symbols is n-k. 

In order to find the error correction capability t of RS code 

we make use of the formula 2t=n-k. 

 

DATA PARITY 

 

   <------------------------n-----------------------------> 
Suppose we intend to transmit a ‘k’ symbol message where 

‘k’ is 223 and error correcting capability (t) is 16. Then n will 

be calculated as; 

                =255 

As the value of t is 16, this means that n=k+2t should assure 

reconstruction of the message at the receiving end if the total 

numbers of corrupted symbols are less than t. According to 

this fact, in the scenario described above, where k is 223 and 

n is 255, the code is capable of correcting 16 corrupted 

symbols of every 255 symbol packet[7]. 

Detailed description of RS codes is described in later sections 

of the report 

.  

A typical RS system can be shown as; 

 

 

 

 

 

Figure 2: Typical Reed Solomon Architecture 

 
2.Methodology 

2.1 Galois Field 

Galois field plays a very important role in encoding and 

decoding procedures of RS algorithm. It is named for a 

French mathematician Evariste Galois. Galois field is a finite 

field. For any prime number p, there is GF (p), i.e. Galois 

field that consists of precisely p elements. Galois Field is 

categorized into two types; binary field GF (2) and extended 

Galois Field GF (2^m) 

Binary Galois Field 

As the name suggest, binary Galois field contains 0 or 1. It is 

defined as GF (2) = {0, 1}. The addition of two numbers in 

the binary field will always result in the number related to the 

set. Similarly the multiplication will also result in the number 

related to the set. It uses the modulo 2 addition. 

Table 1 below shows the addition in binary Galois field. It is 

evident that the result of addition always remains within the 

set. 
Table 1: Addition for GF (2) 

+ 0 1 

0 0 1 

1 1 0 

Table 2 below shows the multiplication in binary Galois field. 

Again we can see that multiplication result always remains 

within the set. 

Table 2: Multiplication for GF (2) 

* 0 1 

0 0 0 

1 0 1 

2.1.1 Polynomials in Binary Galois Field 

When it comes to polynomials in binary Galois field, it is 

important to note that every binary number can be stand for a 

polynomial. A polynomial up to power n can be represented 

as; 

               
     

         

Suppose if we want to generate a polynomial for the binary 

number 101110001. In this case value of n is 8 which mean 

that the above equation goes up to 8. The multiplication is 

shown in the table below; 
Table 3: Binary to Polynomial Conversion 

1 0 1 1 1 0 0 0 1 

                           

The above multiplication results in the conversion of binary 

to polynomial which is given by; 

                                

                        

2.1.2 Multiplication of Polynomials in Binary Galois Field 

For multiplication of two polynomials consider any two 

polynomials. Suppose the first polynomial is          
   and another polynomial     . Multiplication in finite 

fields uses AND logic operation. So multiplying these two 

polynomials results in; 

(           *(      )=                
         

RS 

Encoder 

Communication 

channel 

RS 

Decoder 

Noise 

Sender Receiver 
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(           *(      )=             

Addition uses XOR logic operation so the even numbers of 

terms are canceled out. 

2.1.3 Addition of Polynomials in Binary Galois Field 

For addition of two polynomials consider any two 

polynomials. Suppose three polynomials          , 

       and     . Now adding these three polynomials 

results in; 

(          )+(        )+(     )=      
     +       +      

 

(          )+(        )+(     )=        

2.1.4 Extended Galois Field 

There is also a possibility of extending GF (p) up to p^m 

elements, where m is a positive integer. This extension results 

in GF (p^m). As the field is extended, there is addition of 

some exclusive elements other then 0 and 1. These elements 

are represented by α. Now power of α can represent each non 

zero in the extended field GF (2^m).  F, an infinite field, is 

constituted by initiating with elements {0, 1, α}. Additional 

to this more elements are generated by multiplying α with 

every last entry[8].  This gives; 

  {               }  {                 } 

In order to acquire finite set of elements of GF (2^m) from 

above mentioned expression, there is a compulsion of 

imposing a condition on F so that it only holds 2^m elements 

which should be closed under multiplication. This condition 

characterized by; 

            

             

By making use of the above mentioned polynomial 

constraint, any field element that possess power greater than 

or equivalent to      , can be trimmed down to powerless 

then  the factor     . This is shown by; 

                         

Now using the above mentioned expression, we can construct 

a finite sequence from an infinite sequence. We represent this 

newly constructed finite sequence with F* and is given by; 

   {                                  } 

   {                             } 

Thus now the elements for the field GF (2^m) will be given 

by; 

       {                   } 
As we know that the extended field is not restricted to just 

two numbers so we consider an example GF (4) = {0, 1, 2, 

3}. Table 4 shows the addition of this example. 

 

Table 4: Addition for GF (4) 

+ 0 1 2 3 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 

Table 5: Multiplication for GF (4) 

 

 

 

 

 

 

 

Table 5 shows the multiplication for the same example. 

We can also represent GF (4) in binary by performing a 

conversion. The above example can be performed again using 

binary conversion. Table 6 shows addition in binary 

representation and Table 7 shows the multiplication in binary 

representation. 
Table 6: Addition in Binary Representation 

+ 00 01 10 11 

00 00 01 10 11 

01 01 00 11 01 

10 10 11 00 01 

11 11 10 01 00 

Table 7: Multiplication in Binary Representation 

* 00 01 10 11 

00 00 00 00 00 

01 00 01 10 11 

10 00 10 11 01 

11 00 11 01 10 

We also need the polynomials representing the binary 

conversions in Table 6 and Table 7. These addition and 

multiplication of polynomials are shown in Table 8 and Table 

9 respectively. 
Table 8: Addition in Polynomial Representation 

+ 0 1 x x+1 

0 0 1 x x+1 

1 1 0 x+1 x 

x x x+1 0 1 

x+1 x+1 x 1 0 

 

Table 9: Multiplication in Polynomial Representation 

* 0 1 x x+1 

0 0 0 0 0 

1 0 1 x x+1 

x 0 x x+1 1 

x+1 0 x+1 1 x 

+ 0 1 2 3 

0 0 0 0 0 

1 0 1 2 3 

2 0 2 0 2 

3 0 3 2 1 
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2.1.5 Primitive Polynomials 

Primitive polynomial characterizes the finite fields GF (2^m) 

which are required for Reed Solomon codes. There are 

conditions needed for a polynomial to be primitive. A 

polynomial of degree m is said to be primitive if the smallest 

positive integer n for which f(X) divides      is n=2m-1. It 

is important to note that their division results into a non zero 

quotient and a zero reminder. Table 10 lists some important 

primitive polynomials. 
Table 10:  Primitive Polynomials [16] 

 
3.1 Reed Solomon Encoding 

Reed Solomon codes consist of symbols which are made of m 

bit sequence. The following equation articulates conventional 

form of Reed Solomon (RS) error correction scheme. 

                     

. The polynomial generation in RS algorithm is given by; 

               
          

         
The degree of polynomial generator and the number of parity 

symbols both are equivalent. RS codes are basically a subset 

of Bose Chaudhuri Hochquenghem (BCH) codes. The earlier 

mentioned correlation between polynomial generator and the 

number of parity symbols is the same for BCH codes as well. 

Given that the degree of polynomial generator is 2t, it is 

essential that there must be 2t powers of α which are also the 

roots of the polynomial. The roots of g(X) are referred as α, 

α
2 

up to α
2t

. However it is not compulsory to initiate the root 

α as initiating with any power of α is promising[9]. Taking an 

example of (7,3) error correcting Reed Solomon code. The 

according to the above mentioned equations the polynomial 

generator in terms of its roots would be given by; 

                             
                                 

                        

                                    
    

                     

Moving from least order to highest order and converting 

negative signs to positive, as          +1 = –1 in binary field, we 

come up with the following equation for g(x); 

                         

3.1.1 Systematic Encoding 

Since RS codes are cyclic, so encoding in systematic form is 

similar to binary encoding process. RS coding is called 

systematic because the original data is not changed but only 

parity bits are added to it. A message polynomial, referred as 

m(X), is shifted into k stages of codeword in the most right 

register. After that an addition of parity polynomial, referred 

as p(X), is done by placing it into n-k stages in the most left 

register. Now m(X) is multiplied by X 
n- k

 which results in 

manipulating m(X) algebraically in such a way that it is 

shifted right with respect to n-k positions. Now division 

between X 
n- k

 m(X) and g(X) is done which gives; 

                         
In the above equation q(X) is quotient polynomial and p(X) is 

remainder polynomials. U(X) represents the codeword 

polynomial and is given by; 

                     
The procedure mentioned above could be more elaborated by 

encoding the following symbol messages. 

   ⏟
  

   ⏟
  

   ⏟
  

 

For RS code (7,3) with the generator polynomial equation 

described earlier, multiplying the message polynomial α
1
+ α

3
 

X+ α
5
 X

2
 by X 

n- k
= X4 results in α

1
X

4
+ α

3
X

5
+ α

5
 X

6
. Now 

the next step is division, as described earlier, which takes 

place between the shifted message polynomial with the 

polynomial generator α
3
+ α

1
 X+ α

0
 X

2
+ α

3 
X

3
+ X

4
.   

 

Table 11: Rules for Polynomial Addition 
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Table 12: Rules for Polynomial Addition 

 
It is important to note that the polynomial division is more 

complex as compared to its binary equivalent. This is because 

the required operations have to follow certain rules which are 

presented in Table 11 and Table 12. The division results in 

the following remainder or parity polynomial.  

                      
Then, the resulting polynomial can be written as follows: 

                                     

In order to encode a three symbol sequence in systematic 

shape in accordance with (7,3) Reed Solomon codes 

illustrated by polynomial generator g(X), a linear feedback 

shift register (LFSR) is required. As described earlier, the 

LFSR also works on the principle of moving from least to 

highest order. In this encoding procedure, the (7, 3) Reed 

Solomon nonzero code words consists of 2
m

-1 = 7 symbols 

where each symbol consists of m= 3 bits. It is important to 

note that procedure to be done here is non binary, so that each 

stage in the shift register holds a 3-bit symbol.  

LFSR consists of two switches referred as switch 1 and 

switch 2. Switch 1 is shut down during first k clock cycles 

which permit the shifting of message symbols to n-k stage 

shift register. Switch 2 is positioned descendent to permit 

instantaneous transport of the message symbols directly to an 

output register. Once the kth message symbol is shifted to 

output register, switch 2 is positioned ascendant and switch 1 

is opened. Now parity symbols are transferred to the output 

register by n-k clock cycles as a result the shift register 

becomes under empty state. At this stage the total numbers of 

clock cycles are equal to n and the output register is the 

codeword polynomial p(X)+X
n-k

 m(X). Using the same 

symbol sequence 010, 110, 111 where the right most symbols 

is the early earliest symbol, and the rightmost bit is the first 

bit. 

Once the third clock cycle is completed, there are four parity 

symbols in the register that are α
0
, α

2
, α

4
, and α

6
. Now switch 

1 is opened and switch 2 turned in ascendant position and 

parity symbols are transferred to output. At this instant the 

output codeword i.e. U(X) is given by; 

     ∑      

 

   

 

Using the above mentioned formula output codeword comes 

to be; 

                                     

                                         

                 

As discussed earlier that validating contents of the register in 

polynomial case is complex as compared to binary case. 

Rules, showed in Table 1 and Table 2, are to be applied here.  

It is compulsory that roots of g(X) must be the roots of the 

codeword generated by it. This is because a suitable 

codeword is given by; 

                  [16] 

As a result a random codeword must yield zero value when it 

is evaluated at any root of polynomial generator. Keeping this 

fact in mind the earlier mentioned equation            
                                       
        is simplified by using the following expression; 

                         
By above mentioned equation each single term of U(X) will 

give following results; 

                           

                      

                     

                              

                      

                     

                                

                      

                     

                                

                      

                     

The above calculations exhibits that a codeword calculated at 

any root of generator polynomial necessarily gives a zero 

value. 

3.2 Reed Solomon Decoding 

In the start (7, 3) Reed Solomon code was used to encode a 

message which ultimately leads to generation of a codeword 

polynomial. As the transmission takes place this codeword is 

altered and as a result errors are induced at receiver’s end. 

Keeping in mind the fact that errors induced during the 

transmission should correspond to the code’s error correction 

capacity. According to this particular case, where codeword 

consists of seven symbols, error e(X) can be given as follows; 

     ∑      

 

   

 

Assuming a double symbol error we can elaborate the above 

equation as; 
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In simple words we can assume from the above equation that 

a data symbol and a parity symbol have been corrupted. To 

elaborate more, data symbol is altered with 3 bit error and 

parity symbol is altered with 1 bit error where parity symbol 

and data symbol are represented by α
2
 and α

5
 respectively. 

Now another polynomial is induced here and is named as 

corrupted codeword polynomial represented by r(X) which is 

actually the sum of error pattern e(X) and transmitted 

codeword polynomial U(X). Simply represented as; 

               

As the above equation states that in order to get r(X) we have 

to add e(X) to U(X), so adding both expressions give; 

                                         

                 

                                 

Observing the equations we reveal that there are four 

unknowns. This means that in order to solve it, we need four 

equations. It is important to note that the four so called 

unknowns are two error location and two error values. 

3.3 Calculation of Syndrome 

Now the concept of syndrome plays its role. Basically 

syndrome results from the parity check that is executed on 

corrupted codeword (r) in order to be certain about it validity. 

If r is a valid, i.e. it is a member of valid code word set, then 

syndrome value (S) must be equal to zero. On the other hand, 

if r is not a member of valid code word set, the value of S 

must be non zero. Basically syndrome (S) consists of n-k 

symbols i.e. Si have a set of values from    i=1 up to n-k. So 

there will be four symbols in each single syndrome vector in 

our case i.e. (7,3) Reed Solomon code. The syndrome 

calculation can be done by the fact that; 

              

The above expression, we can conclude that each U(X) is a 

multiple of g(X) which is the generator polynomial. Keeping 

the fact that U(X) is a multiple of g(X) it is compulsory that 

roots of both polynomial expressions, U(X) and g(X), must 

be same. As discussed earlier that r(X) = U(X) + e(X) so we 

should get a zero value for a valid code word when r(x) is 

evaluated at every single root of g(X). If a non-zero value is 

obtained, then it is verified that it is not a valid code word. 

Syndrome is computed by; 

       |                                      

Using the above expression, syndrome computation is done 

as follows; 

                               

                         

                                 

                         

                                  

                         

                                   

                        

The above calculation suggests that the message received 

holds errors since all syndrome values are not equal to zero. 

The calculation done above can also be verified by another 

procedure. This procedure is to relate roots of g(X) with the 

error polynomial e(X).  The term ‘relate’, used above, 

means that evaluating e(X) at the roots of g(X). This 

evaluation must give the same syndrome results when r(X) is 

evaluated at the roots of g(X). This calculation is done as 

follows; 

       |                                      

              |                 

                             

               

Using the above expression, syndrome computation is done 

as follows; 

                        

                         

                          

                         

Notice that the above syndrome values obtained by 

evaluating e(X) at the roots of g(X) are the same as the 

syndrome values obtained when r(X) was evaluated at the 

roots of g(X). 

3.4 Error Location and Error Values 

As the syndrome is computed, we know have to find error 

location and error values. First we will systematically find 

locations of the errors. Once locations have been found out, 

we will go for the error values. 

3.5 Error Location 

Assume that there are v in the code word at the locations 

represented by             . Assuming this, the error 

polynomial will be defined as; 

         
       

         
   

In the above expression, indices 1, 2 up to v correspond to 

1st, 2nd up to vth errors. On the other hand, the index j 

corresponds to error location. Now there is need to determine 

every single error value and its location in order to correct the 

code. Error value is represented by ej1 and its corresponding 

error location is represented as X
 j1

. βl=α
j1

  is an error locator 

number to be used here. Now the syndrome symbols are 

acquired by replacing α
i 
 into r(X). This would be given as 

follows; 

                            

              
       

         
  

                 
        

          
   



442 ISSN: 1013-5316; CODEN: SINTE 8 Sci. Int.(Lahore),29(2),435-445,2017 

March-April 

As discussed earlier that as the syndrome gives a non zero 

value, it is evident that error is present. Now it is required to 

find the error location. Here another term is introduced which 

is known as error locator polynomial and is represented by 

σ(X). This would be given as follow; 

                            

          
       

  

The roots of error locator polynomial come out to 

be   
⁄     

⁄   
  

⁄ . Now a system of equations can be 

formed involving syndrome and error locator polynomial. 

This is done using modelling techniques and the system is 

givenby; 

 

Assuming the (7,3) Reed Solomon code we can express the 

model as; 

[
    

    
] [

  

  
]   [

  

  
]  

[ 
   

    ] [
  

  
]   [ 

 

 
]  

Now in order to find coefficients we have to take inverse for 

the above system. The inverse of a matrix is given by; 

        
            

      
 

Now finding the determinant        to be used in above 

expression; 

   [ 
   

    ]                  

Finding the cofactor to be used in inverse calculation; 

        [ 
   

    ]  [ 
   

    ] 

Finally, using determinant and cofactor, inverse would be 

given by; 

   [ 
   

    ]  
[ 

   

    ]

  
    [ 

   

    ] 

   [ 
   

    ]  [ 
   

    ] 

The above calculated inverse could be verified by a simple 

matrix calculation law that multiplication of a matrix with its 

inverse results in an identity matrix of the same size. So in 

order to confirm our result; 

[ 
   

    ] [ 
   

    ]  [ 
          

           ]  [
  
  

] 

As the multiplication results in a 2×2 identity matrix, hence it 

is verified that inverse is accurately calculated. 

Now refreshing the earlier discussed equation; 

[ 
   

    ] [
  

  
]   [ 

 

 
]  

Finding the error locations started by simplifying the 

coefficients of the σ(X). 

[
  

  
]  [ 

   

    ] [
  

 
]  [ 

 

  ]  [ 
 

  ] 

Where σ(X) is represented as; 

               
              

As we know that the roots of σ(X) are the reciprocals of the 

error locations. From this fact it is evident that if roots are 

found out, we will get to know error location. An important 

point to be noted here is that σ(X ) = 0 indicates an error. 

Keeping these points in mind, following calculations are 

computed to locate an error; 

                    

                    

                    

                 

                  

                      

                      

In the above calculated expressions,               . 

This means that these both locations indicate an error. To be 

more elaborate, we can say that one root exits at 1/βl = α
3
. 

Thus, βl = 1/α
3
 = α

4
 and another root exits at 1/βl′ = α

4
. Thus,  

βl′ = 1/α
4
 = α

3
, where l and l′ refer to the 1

st
, 2

nd
 up to vth 

error. As we have concluded that there are two symbol errors, 

so e(x) can be written as; 

         
       

   

Concluding the above explanation we can say that we have 

come across two errors at α
3
 and α

4
. 

Error Value 

Once the error location is found out, next part is to find error 

values. Which means now we have to find the error values ej1 

corresponding to the locations β1 = α
3 

and β2 = α
4
 It is worth 

noting that j corresponds to the error location and l 

corresponds to lth error. In order to evaluate error values we 

will use the equations for syndrome which were calculated in 

the earlier section of decoding process. It is important to note 

that  here we can make use any of the four equations. 

                    

              
       

  

Rewriting the above equations in matrix form: 

[
    

  
   

 ]  [
  

  
]   [

  

  
]  

[ 
   

    ] [
  

  
]   [ 

 

  ]  

As we are to find out e1 and e2 so inverse would be 

calculated here using the same formula applied earlier i.e. 

finding cofactor and determinant and then dividing them to 

get inverse. This calculation is done as follow; 

   [ 
   

    ]  
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    ]

         
 

[ 
   

    ]

     
 

   [ 
   

    ]     [ 
   

    ]    [ 
   

    ] 

   [ 
   

    ]  [ 
   

    ] 
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Using the above calculated inverse error values come out to 

be; 

[
  

  
]  [ 

   

    ] [ 
 

  ]  [ 
     

     ]  [ 
 

  ] 

After finding error location and error values we can deduce 

estimated error polynomial that is represented by ̂   . This 

estimated error polynomial is given by; 

 ̂       
      

             

Applying the same calculation earlier used but replacing the 

term e(X) with  ̂    we have; 

 ̂          ̂               ̂    

Where 

                                         

                 
And 

 ̂                                        

                 

Adding both terms yields; 

 ̂                                        

                 

                                 
As the message symbol is composed of k=3 right most 

symbols so the message that we decoded from the above 

expression comes out to be; 

   ⏟
  

   ⏟
  

   ⏟
  

 

The decoded message is precisely the same that was earlier 

selected during the encoding process. 

4.Implementation 

The design of a Reed Solomon encoder and decoder in 

MATLAB will be discussed in this chapter. RS (255,223) 

code is designed in MATLAB and output is taken and 

analysed. In RS (255,223) code, every code word constitutes 

of 255 code word bytes. Out of these 255 bytes, 223 bytes are 

the original data and the rest 32 are for parity.The main 

purpose of implementing in Reed Solomon codes in 

MATLAB is to understand the basis working of this 

technique and to understand that how signal transmission 

occurs. During transmission if error occurs, then what happen 

to transmitted signal, capability of decoder, to what level 

decoder can detect the errors and error correction capability 

of the decoder. That RS code will be able to correct up to 16 

symbol errors out of 255 symbols automatically. Maximum 

code word length for a RS code is given by the formula; 

       

As in our case m is 8 so, 

       = 255 bytes 

For error correction capability, we make use of the following 

formula; 

  
   

 
 

As in our case n=255 and k=223 so, 

  
       

 
    

Once the parameters have been set, we generate transmission 

data bits applying the random function by using code length 

and input bits. Now we convert these data bits to data 

symbols using binary to decimal convertor which is a 

MATLAB built in function. At this point we have obtained 

our message symbols to be transmitted. Now we apply Galois 

field function to these message symbol that is necessary for 

RS encoding procedure. Then the converted message symbols 

which are served as an input to encoder. 

After the modulation process in completed, we induce an 

SNR vector in order to calculate bit error rate on these values 

of SNR. We induce a noise signal using ‘rand’ function and 

the symbol of random noise is added to encoded data. This 

noise signal once added to the transmitted signal, we name it 

as received signal. This procedure gives a look that the data 

travelled on channel and when received at the other end, it 

has induced errors in itself due to noise and other processes.  

Now the received signal with the noise is demodulated and 

then bits in errors are calculated. BER is found by using the 

formula; 

    
                             

                                
 

Now the data with the addition of noise itself becomes the 

input of RS decoder. RS decoder can remove the error from 

2t symbols from the data given at its input.  

The decoder function is applied to convert the original 

sequence by removing errors using the redundant or parity 

bits added by the encoder and we receive the same message 

signal which  was transmitted in the beginning 

 

5.RESULTS AND DISCUSSIONS 

Now the results obtained is a two dimensional graph which 

plots the bit error rate as a function of signal to noise ratio. To 

be more elaborate we can say that the plot constitutes of bit 

error rate on y axis and Eb/No on x axis. Eb/No is actually 

energy per bit divided by power spectral density of noise. It is 

important to note that energy per bit is defined as the total 

amount of energy divided by the total number of bits. Bit 

error rate is expressed in power of tens and Eb/No is 

represented in decibels.  

The considerable point here is that high bit error rate 

indicates that more bits are in error. This results in the 

performance degradation for any system. So in order to have 

efficient performance, bit error rate should be in certain 

limits. 

Figure 3 shows the results for the simulation of transmission 

of data without using any type of coding. Figure 4 shows the 

results for the simulation of transmission using Reed 

Solomon codes. Now the comparison of both plots in Figure 

5 clearly shows that the curve for RS coding is beneath the 

curve for without coding. This clearly shows that the bit error 

rate is higher when transmission is done without using coding 

schemes which ultimately means that more number of bits are 

in error. Whereas if we observe the curve for RS coding, we 

see that it has a lower bit error rate as compared to the upper 

curve which means that when we transmit data using RS 

codes, the amount of bits in error is considerably low. 

Furthermore, we can also observe bit error rates for 

corresponding Eb/No values. For instance at 6 decibels, RS 

gives a bit error rate of         whereas at the same value of 

Eb/No the curve for without channel coding gives a bit error 

rate of approximately        . This shows a significant 

difference between to bit error rates for a same Eb/No. 
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Figure 3: BER Vs Eb/No without Channel Coding 

 
Figure 4: BER Vs Eb/No for Reed Solomon Coding 

 

From Figure 5 we can also evaluate the coding gain. Coding 

gain is referred as the measure in difference between signal to 

noise ratio levels between the uncoded and coded systems 

require to achieve the same BER level. For instance, in or 

case the RS coded system has a bit error rate of      at 

approximately 7.2 decibels whereas the uncoded system has 

the same BER level at approximately 11.2 decibels. So the 

coding gain comes out to be 11.2db-7.2db=4db. 

Bit error rate is a significant parameter in evaluating any 

system’s performance. It evaluates a complete end to end 

performance for any system transmitting digital data from 

one side to another. The curve plotted for bit error rate 

against signal to noise ratio helps the communication 

engineers to choose the best alternative for transmission in 

terms of reliability.   The major reasons for performance 

degradation are noise and alteration in propagation paths, in 

case of wireless, and in communication these both situations 

are regularly observed. So to overcome these situations we 

make use of error correction schemes which ensures us a very 

much reliable data transmission to a great extent as our 

results clearly depicts this point. 

 
Figure 5: Comparison of Both Results 

 
6.CONCLUSION 
We presented a comparison of transmitting digital data with 

and without using error control coding using MATLAB. For 

ECC we implemented Reed Solomon (255,223) code which 

constructs 255 symbols of 8 bits each with the error 

correction capability of 16 with total. BER curves for both 

transmissions were obtained and compared.  From the results, 

it is very obvious that the BER curve for Reed Solomon code 

is healthier as compared to the BER curve of data transmitted 

without coding. It was witnessed that for a distinct value of 

signal to noise ratio, the bits in error can be found if the total 

number of symbols in error is less than the error correction 

capability of code. We observed that RS codes are a 

dominant and effective class of block codes in the field of 

error control coding. In future, one can implement LDPC 

codes and can compare results given by RS code with the 

results of LDPC codes and can spot the difference between 

the two. One can also applydifferent modulation schemes and 

can deduce a comparison. 
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