
Special issue

Sci.Int.(Lahore),29(2),103-107,2017 ISSN 1013-5316;CODEN: SINTE 8 107

March-April

AN IMPLEMENTATION OF A CONFIGURABLE SERIAL-TO-ETHERNET
CONVERTER USING LWIP

 Jungho Moon
1,

, Myunggon Yoon
2

1Department of Electrical Engineering, Gangneung-Wonju National University, Gangneung, Gangwondo, South Korea

2 Department of Precision Mechanical Engineering, Gangneung-Wonju National University, Wonju, Gangwondo, South Korea
For correspondence; Tel. + (82) 336402427, E-mail: itsmoon@gwnu.ac.kr

ABSTRACT: This paper gives a brief introduction to an implementation of an embedded device for converting data

from an asynchronous serial communication port to TCP/IP or UDP packets and vice versa using an ARM-based 32-

bit microcontroller. The operating parameters of the converting device can be modified through the Ethernet

interface of the device using a dedicated configuration program running on a PC. The configuration program was

written in Python. The size of serial data to be transmitted as a single packet and the minimum time interval to

distinguish different groups of serial data are configurable. The feature facilitates the transmission of received serial

data when the received data are organized into groups and each group is to be transmitted as a packet over the

Ethernet connections. The converting device supports 3 asynchronous serial communication protocols, RS-232, RS-

422, and RS-485 and supports 3 network modes, TCP/IP server, TCP/IP client, and UDP client. The TCP/IP and

UDP protocols were implemented on the 32-bit microcontroller based upon lwIP (A lightweight TCP/IP), an open

source TCP/IP stack. In the implementation, some features related to Nagle’s algorithm, which are usually included

in the TCP/IP stack, are disabled for the rapid transmission of data. The converting device can be utilized as a

seamless bridge between an existing serial port and a TCP/IP network port without the need for changing existing

hardware or protocols.
Keywords: Serial, Ethernet, converter, lwIP, embedded systems

1. INTRODUCTION
Communications over the Ethernet connections are frequently

used these days in a variety of devices ranging from small

embedded devices to personal computers. Despite the various

advantages of Ethernet communication, plenty of legacy

devices that only have serial communication interfaces are

still in use in many fields for the purpose of device

configuration and data exchange.

In industrial environments such as factories, it is common to

construct a network composed of a plurality of apparatuses

and a data logger, where the data logger collects data from

the apparatuses on a regular basis. Data loggers for this

purpose commonly have Ethernet communication interfaces

but not all apparatuses do. Some apparatuses may have only

traditional serial communication interfaces. It is not easy to

construct such a network using such legacy apparatuses. The

traditional communication interface of the legacy apparatuses

needs to be upgraded, which may cause both considerable

cost and time. A converting device that can convert TCP/IP

or UDP packets to asynchronous serial data and vice versa

can help solve the problem without the need for modifying

the existing legacy apparatuses. The serial-to-Ethernet

converter can simply bridge seamlessly the existing the

Ethernet interface of the data logger and the asynchronous

serial ports of the legacy apparatuses.

This paper gives a brief introduction to an implementation of

such a serial-to-Ethernet converter (hereinafter referred to as

the converter) using a 32-bit microcontroller STM32F107

and the lwIP (A lightweight TCP/IP). The STM32F107xx

series are connectivity line microcontrollers equipped with an

Ethernet peripheral that supports both the media independent

interface (MII) and the reduced media independent interface

(RMII) [1]. The lwIP is an open source TCP/IP stack

designed for embedded systems having limited resources [2].

Figure (1) shows a picture of the developed converter.

Fig (1) A picture of the Serial-to-Ethernet converter

The developed converter supports three asynchronous serial

communication protocols, RS-232, RS-422, and RS-485 and

supports three different network modes, TCP/IP server,

TCP/IP client, and UDP client. Users can configure various

operating parameters of the converter through its Ethernet

interface. For configuring the converter, we developed a

dedicated program running on a PC. It is assumed that the IP

address of the converter is not known to the user beforehand.

Nonetheless, the configuration program can communicate

with the converter and allows the user to read and to modify

its operating parameters.

The open source TCP/IP stack, lwIP, supports well-known

protocols such as IP, ICMP, UDP, TCP, DHCP, and ARP

required for the implementation of the converter. It provides

both a raw API and a high-level sequential API that requires

a real-time operation system [3]. The raw API is used for

developing callback-based applications. Compared to the

high-level sequential API, the raw API adds some complexity

for application development but provides the best

performance and code size [3]. We adopted the raw API for

better execution speed and less memory usage. Some features

of TCP/IP were disabled for rapid transmission of data at the

cost of transmission efficiency.

mailto:itsmoon@gwnu.ac.kr

Special issue

108 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),29(2),103-107,2017

March-April

2. CONVERTER’S OPERATING PARAMETERS
A user needs to configure the operating parameters of the

converter before using it. The user-configurable parameters

include the following:

 Converter’s IP address, subnet mask, and gateway’s IP

address

 Operating mode: TCP/IP server, TCP/IP client, and UDP

client

 Port number to which other TCP/IP clients connect when

the converter acts as a TCP/IP server

 Server’s IP address and port number when the converter

acts as a TCP/IP client

 Server’s IP address and port number in when the

converter acts as a UDP client

 Serial communication parameters: Baud rate, data bits,

stop bits, and parity

 Size of serial data to send as a single packet over the

Ethernet connection (SOD)

 Timer’s fire interval for determining the boundary

between two groups of serial data (TFI)

There is no option about the selection of an asynchronous

serial communication protocol. All of the three asynchronous

serial communication protocols are supported simultaneously

but only one of them can be used at a time to avoid conflicts.

Users can simply insert a connector to one of the serial

communication ports that they want to use.

Receiving a data packet from the Ethernet interface, the

converter sends the payload contained in the received packet

to the serial communication interface immediately. On the

other hand, the asynchronous serial communication is byte-

wise and a received byte is not immediately sent to the

Ethernet interface. The received serial data are organized into

groups and then one group is transmitted to the Ethernet

interface as one packet. The two parameters named SOD and

TFI specify how to organize and transmit the received serial

data to the Ethernet interface.

The TFI indicates the minimum time gap between two

consecutive bytes before an internal timer expires as shown

in figure (2). If the time interval between two consecutive

bytes is less than the TFI value, the two bytes are considered

to belong to the same group and stored sequentially in an

internal buffer of the microcontroller. If the time interval

exceeds the TFI value, the internal timer expires, which

indicates the reception of a group of data has been completed

and so triggers the transmission of the stored data.

TFI
New data group

Timer expires

Fig (2) The relation between the TFI and timer

If the timer expires, the converter compares the size of the

stored data and the SOD value. The data stored in the buffer

are transmitted only when the two values are identical. If the

two values do not match, the stored data are discarded and the

buffer is cleared. If the SOD is set to 0, the converter sends

the stored data without regard to its size. If the TFI is set to 0

and the SOD is set to a positive value, the timer is not used

and the stored data are transmitted as soon as its size reaches

the SOD value. It is not allowed to set both SOD and TFI to

zero.

Setting both TFI and SOD to positive values is useful when

the serial data are organized into groups and the time interval

between two consecutive groups is fixed and known. This is

usually the case in real applications in which the serial data

are packetized. For example, if the serial data are grouped

into packets, the size of each packet being fixed to 100 bytes

and the time interval between two consecutive packets being

fixed to 50 ms, the SOD can be set to 100 and the TFI can be

set a value less than 50 ms. In some applications, the packets

may have variable lengths, in which case the SOD can be set

0. Then only the time interval between two consecutive

packets is considered.

For setting/modifying these parameters, we developed a

dedicated configuration program running on a PC. Figure (3)

shows a screen snapshot of the configuration program. The

configuration program communicates with converters on the

same subnet as the PC on which it is running. It displays the

operation parameters of all the converters existing on the

subnet and allows the user to modify the parameters of a

user-chosen converter. The modified values are transmitted to

the user-chosen converter and stored in the internal flash

memory of the converter. The configuration program was

written in Python using a graphic library called PyQT [4-7].

A Python script is a program executed by the Python

interpreter, but there are ways to compile Python scripts into

a standalone executable. The configuration program was also

built into a standalone application.

Fig (3) A screen snapshot of the configuration program

Though the configuration is conducted through the Ethernet

connection, the user is not required to know the IP address of

the converter. The IP address of the converter is assumed to

be not known to the user beforehand. Under this condition,

the only method that enables communication between the

configuration program running on a PC and the converters on

the same subnet as the PC is to exchange UDP broadcast

messages. As a result, both the configuration program and the

converters use UDP broadcasts for the exchange of requests

and responses.

If the user clicks the Search button shown in figure (3), the

program sends a UDP broadcast message on a predefined

port to discover the converters existing on the network. The

broadcast message, which has a predefined format, is

Special issue

Sci.Int.(Lahore),29(2),103-107,2017 ISSN 1013-5316;CODEN: SINTE 8 109

March-April

received by all devices listening on the port but other devices

do not understand it. All the converters always listen on the

port and can respond to the broadcast message. The response

of each converter includes its firmware version, its MAC

address, and aforementioned operating parameters. Receiving

the responses from all the converters existing on the network,

the configuration program displays the information contained

therein, as shown in figure (3). The configuration program

can display the operating parameters of all the converters but

the parameters of one converter at a time. Since each

converter has a unique MAC address, the user can identify

the parameters of a specific converter by choosing its MAC

address listed on the left side of the configuration program

shown in figure (3).

After the user chooses a specific MAC address, the user can

modify the operating parameters of the converter associated

with the chosen MAC address. If the user clicks the Save

button after setting all the necessary parameters, the

configuration program sends a UDP broadcast message on

the predefined port, the message containing the MAC address

of the target converter and all the operating parameters. The

broadcast message is received by all the converters on the

same subnet. The converters discard the broadcast message

unless the MAC address contained therein matches its own

MAC address. As a result, only the converter that has the

same MAC address accepts the parameters contained in the

broadcast message and writes them in its internal flash

memory. After completing the writing operation, the convert

reboots.

3. THE ALGORITHM FOR HANDLING DATA
The 32-bit microcontroller handles both the transmission and

reception of the serial data using interrupts. As soon as a new

byte is received by the serial communication interface, an

associated receive interrupt handler is executed. Figure (4)

shows the flow chart for the data processing of the receive

interrupt handler.

Start

Store received
data in buffer

TFI = 0?

Data size = SOD?

Prepare data
transmission

Clear and start
counter

End

Yes

No

Yes

No

Fig (4) The flow chart for the processing of the serial data

receive interrupt

Receiving a new byte, the receive interrupt handler stores it

in an internal buffer and checks whether the TFI value is

zero. If so, the handler compares the size of the stored data to

the SOD value. If the two values are identical, the condition

for transmitting the serial data over the Ethernet connection is

met and the interrupt handler prepares for the transmission of

the store data. If the two values do not match, no further

action is executed. If the TFI is set to a positive value, the

receive interrupt handler clears the timer for measuring the

time interval between two consecutive bytes and starts the

timer. If the timer fires before a next byte is received, an

associated timer interrupt handler is executed. In other words,

in the case of a positive TFI value, whether to transmit the

stored serial data over the Ethernet connection is determined

not by the receive interrupt handler but by the timer interrupt

handler.

If the timer expires when the TFI is set to a positive value, it

indicates that the reception of a group of data has been

completed and data to be received subsequently will belong

to a new group. Unless the SOD is set to zero, the timer

interrupt handler compares the size of the data that have been

stored in the buffer thus far to the SOD value. If the two

values match, the timer interrupt handler prepares for the

transmission of the stored data. Otherwise, the data in the

buffer are simply discarded. If the SOD is set to zero, the

timer interrupt handler prepares for the transmission of the

stored data with no further comparison.

The receive interrupt handler and the timer interrupt handler

only determine whether the condition for transmitting the

stored data is satisfied. The actual data transmission is

handled in the main routine because it is a time-consuming

task and therefore it is not desirable to execute it in the

interrupt handlers. The main routine has an infinite loop in

which there is a routine to check whether the preparation for

the data transmission is finished. If confirmed, several lwIP

API functions are called sequentially to transmit the stored

data over the Ethernet connection. The API functions to be

called depend upon the current network mode of the

converter.

New data can be received by the serial interface while the

data stored in the buffer are being transmitted over the

Ethernet connection, which may result in data corruption or

transmission of the wrong data. To prevent such a problem,

we need two separate buffers, one for storing new data and

the other for storing the old data to transmit. The converter

manages two pointers, one pointing to the buffer for storing

new data and the other pointing to the buffer storing the data

to transmit. The former is used by the receive interrupt

handler and the latter is used by the routine to transmit data.

Figure (5) shows the mechanism for maintaining the two

buffers.

Special issue

110 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),29(2),103-107,2017

March-April

Interrupt handler

store new data at
the buffer

pointed to by

pointer A

main routine

buffer 1

buffer 2

transmit data
stored in buffer
pointed to by

pointer B

Fig (5) The management of dual buffers

In the figure, the point A and point B point to buffer 1 and

buffer 2, respectively. The receive interrupt handler stores

incoming data in the buffer pointed to by the pointer A and

the main routine transmits data stored in the buffer pointed to

by the pointer B. Under this condition, incoming data are

stored in the buffer 1 and the data stored in the buffer 2 are

transmitted to the Ethernet interface. When the receive

interrupt handler concludes that the condition for transmitting

the data stored in the buffer pointed to by the pointer A is met,

it prepares for the transmission of the stored data. After

completing the preparation operation, the receive interrupt

handler immediately switches the contents of the two pointers.

From this point on, the incoming data will be stored in the

buffer 2 by the receive interrupt handler and the data stored in

the buffer 1 will be transmitted by the main routine, which

can effectively prevent the data to be sent from being

corrupted by the newly received data. The timer interrupt

handler does the same switching operation as the receive

interrupt handler does.

Unlike the serial data processed by interrupt handlers, data

received from the Ethernet interface are processed by lwIP

callback functions. All the necessary callback functions are

registered during the initialization of the lwIP. The TCP or

UDP operations are based upon continuous software polling

to check if a new packet is received [3]. Figure (6) explains

the operation model of the lwIP in the case where the raw

API is used. The continuous polling operation is executed

within an infinite loop in the main routine and therefore it is

desirable that the infinite loop should not contain time-

consuming functions like delay functions. In the flow chart

shown in figure (6), all the tasks except for the last step are

handled by the lwIP stack and only the last step needs to be

handled by the application.

Exceptions and errors are also handled by associated callback

functions. For example, if the number of SYN retries reaches

a predefined maximum value when trying to open a TCP

connection, the application is notified of the error via an

associated callback function, i.e., the associated callback

function is called automatically. It is not the lwIP but the

application that is responsible for handling the error

appropriately via the callback function.

New packet
received?

Yes

No

Yes

Copy packet from driver
buffers to lwIP buffers

Processing of the packet
by lwIP stack

Application
notification needed?

Processing by callback
functions registered by

application

No

Yes

Fig (6) The operation model of the lwIP when raw API is used

The converter may encounter various kinds of exceptions and

errors during its operation, but must work fine without human

intervention. The UDP is connectionless and works based on

the principle “send and forget.” When the converter works as

a UDP client, it simply transmits received serial data;

therefore the converter in this mode is not likely to encounter

exceptions. In contract, the TCP is a connection-oriented

protocol that provides reliable data delivery services. When

the converter is configured as a TCP server or client, the

advantage of the TCP may create unexpected problems since

the converter is a small embedded system with a limited

memory.

A TCP connection may get broken for some reasons while

the converter transmits data packets to the Ethernet interface.

The TCP/IP stack has no means to detect the broken

connection immediately. In this case, the converter does not

receive acknowledgements and cannot clear the TCP transmit

buffer. The converter keeps retrying the transmission of the

unacknowledged data packets until a predefined maximum

number of retransmissions is reached. In addition, the

apparatus connected to the serial port of the converter does

not know the existence of a TCP connection. It can transmit

data to the converter even while the converter does not

recognize that the TCP connection is broken. If this happens,

the transmit buffer of the converter keeps being consumed

and is not freed until the predefined maximum number of

retransmissions is reached. This would not cause a critical

problem in systems with sufficient memory. The converter,

however, has a limited memory space, and therefore, will be

short of memory soon. Such situations are of primary concern

in the implementation of the converter.

As mentioned above, the data received from the Ethernet

interface are processed by the lwIP callback functions. The

converter needs to manage two sets of callback functions.

The first set is UDP-related callback functions and this is

Special issue

Sci.Int.(Lahore),29(2),103-107,2017 ISSN 1013-5316;CODEN: SINTE 8 111

March-April

irrespective of the network mode of the converter. These

callback functions are required for configuring the converter.

Since the dedicated configuration program communicates

with the converter using UDP broadcasts, the converter need

to maintain this set of callback functions. Every task required

for configuring the converter, such as parsing the received

UDP broadcast messages, writing the received configuration

data to the internal flash memory of the microcontroller, and

responding to the query from the configuration program, is

performed by these callback functions. The second set is

callback functions related to the current network mode of the

converter. Since the converter has three network modes, the

converter needs three different groups of callback functions.

It should be pointed out, however, that only the group of

callback functions pertaining to the current network mode of

the converter is registered during the initialization of the

converter because the other two groups of callback functions

are not used in the current mode. This is why the converter

reboots after the configuration program modifies its network

mode. Registering all the three groups of callback functions

leads to the waste of memory, and therefore, should be

avoided.

Another issue to consider is the so-called Nagle’s algorithm

for improving the efficiency of TCP/IP networks by reducing

the number of packets that need to be transmitted over the

network. Nagle's algorithm works by combining a number of

small outgoing messages, and sending them all at once.

Specifically, as long as there is a sent packet for which the

sender has received no acknowledgment, the sender should

keep buffering its output until it has a full packet's worth of

output, so that output can be sent all at once [8]. The lwIP

also includes Nagle’s algorithm in the implementation of

TCP.

In most cases, Nagle’s algorithm does not yield problems for

the operation of the converter when it is configured as a

TCP/IP server or client. It was occasionally observed,

however, that the converter tried to combine two or three

groups of serial data into one packet especially when the size

of serial data to be sent as one packet is very small and the

time interval between two consecutive data groups is

relatively short. This is the effect of Nagle’s algorithm. The

threshold value for the time interval that causes such a

phenomenon may depend on applications. The converter

should work in such a way that it always transmits a group of

serial data as a single packet. To this end, Nagle’s algorithm

included in the lwIP needs to be disabled for normal

operation of the converter.

4. CONCLUSIONS
The paper introduced an implementation of a configurable

Serial-to-Ethernet converter using the lwIP stack and a 32-bit

microcontroller. The developed converter supports three

asynchronous serial communication protocols and three

network modes. We adopted the raw API of the lwIP for the

implementation of the converter for the purpose of achieving

better execution speed with less memory footprint. The

parameters required for the operation of the converter were

explained and the algorithm for the processing of the received

serial data was described in detail. Also, the way that the

dedicated configuration program communicates with the

converter using UDP broadcast was explained. Although the

core functions of the lwIP do not need modification, Nagle’s

algorithm, which is included in the lwIP for improving the

efficiency of the TCP/IP networks, needs to be disabled for

the rapid transmission of data. It is especially inevitable when

the size of a packet is very small the time interval between

two consecutive packets is short. The developed converter

can work as a seamless bridge between an existing serial port

and a TCP/IP network port without the need for changing

existing hardware or protocols.

5. REFERENCES
[1] STM32F107xxx Reference Manual, STMicroelectronics

(2014).

[2] “lwIP Wiki”, Available at:

http://lwip.wikia.com/wiki/LwIP_Wiki. [Accessed Sep.

20, 2016].

[3] Developing Applications on STM32Cube with lwIP

TCP/IP Stack, STMicroelectronics (2015).

[4] Lubanovic, B., Introducing Python: Modern Computing

in Simple Packages, O’Reilly (2014).

[5] Lutz, M., Learning Python 5/e, O’Reilly (2013).

[6] Summerfield, M., Rapid GUI Programming with Python

and Qt: The Definitive Guide to PyQt Programming,

Prentice Hall (2015).

[7] Harwani, B. M., Introduction to Python Programming

and Developing GUI Applications with PyQT, Cengage

Learning PTR (2011).

[8] “Nagle’s algorithm”, Available at:

https://en.wikipedia.org/wiki/Nagle%27s_algorithm,

[Accessed Sep. 10, 2016].


For correspondence; Tel. + (82) 336402427, E-mail:itsmoon@gwnu.ac.kr

mailto:itsmoon@gwnu.ac.kr

