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ABSTRACT. In this paper, the governing non-linear equation of thin film flow problem with a third grade 

fluid on an inclined plane is solved and analyzed for velocity field using linear Lagrange polynomials in a 

Galerkin’s finite element fashion. The approach having piecewise linear shape functions, provide better 

approximations than those produced by traditional perturbation technique as well as homotopy 

perturbation method. The numerical results state that the presented formulation is quite accurate and 

efficient for this kind of problems. 
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1. INTRODUCTION 

In general most of the problems in science and engineering 

are nonlinear. Specifically, the governing flow problems of 

non-Newtonian fluids are highly nonlinear and have higher 

order than those of Navier-Stokes equations. The solutions 

of such flow problems are always a challenging task to 

mathematicians and computer programmers. The 

perturbations methods [1,2] have been widely applied in 

obtaining the solution of such flow problems. However, the 

perturbation solution required a small or large parameter into 

the equation and the solution is only valid for a very small 

range of the parameter values. To overcome these 

constraints some new methods based on the homotopy 

transformation are developed. Homotopy analysis method 

[3] is proposed by Liao as a generalization of the 

perturbation method which ensures the convergence of the 

developed series solution. He [4] blended the idea of 

homotopy and perturbation into homotopy perturbation 

method. Siddiqui et al. [5] used perturbation and homotopy 

perturbation methods for thin film flow of a third grade fluid 

down an inclined plane. The same problem was considered 

by Sajid et al. [6] and obtained a convergent series solution.  

The purpose of the present investigation is to look for finite 

element solution for the thin film flow of a third grade fluid 

down an inclined plane. The Galerkin’s finite element 

method (FEM) [7-13] based on weighted-residual 

formulation has been finding its applications in almost all 

branches of science and engineering. It has found 

applications in areas as diverse as solid mechanics, fluid 

dynamics, heat transfer and electromagnetism [9]. It is a 

well-established numerical technique in the field of solid 

mechanics [14]. Finite elements have been utilized in 

various different ways to solve boundary value problems. In 

some formulations a weighted residual approach is adopted, 

while in others variational approaches are considered.  

In this paper, we set up finite element solution using linear 

Lagrange polynomials as the element and weight functions 

for the smooth solution of thin film flow of a third grade 

fluid down an inclined plane. Section 2 develops the 

equation governing the motion down an inclined plane. In 

Section 3 the Galerkin’s finite element formulation is 

developed using linear Lagrange polynomial for the 

nonlinear governing differential equation. The graphical 

results are presented in section 4. Section 5 syntheses some 

concluding remarks. 

2. Flow Equations 

The thin film flow of a third order fluid down an inclined 

plane is governed by the boundary value problem [5] 
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where   the constant density, u the velocity along the 

inclined plane,  is the dynamic viscosity, 2 and 3 are 

material constants of third grade fluid and  is the thickness 

of the thin layer. 
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The problem in Eqs. (1) and (2) takes the form 
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In the next section, solution of the governing equation (4) 

subject to (5) by Galerkin’s finite element method using 

linear Lagrange polynomials is presented. 

2. Galerkin’s Finite Element Formulation 
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The Galerkin’s formulation [7-13] in the finite element 

environment requires that we choose a suitable trial or basis 

function that is applied locally over a typical finite element 

in the complete x  domain. Let us denote this trial function 

by u . In this case it is necessary to satisfy inter-element 

compatibility with respect to displacements. In other words, 

the trial function is 0C -continuous. Each element has two 

nodes. We interpolate the function at each node of the 

element. This requires one unknown parameter at each node 

of the element.  

xaau 21
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Rather than formulating the problem in terms of arbitrary 

constants 
1 2&a a , we prefer to recast the above linear trial 

function in terms of values of the dependent functions at 

nodes &i j (the convention used by Zienkiewicz and Stasa 

[7, 8]). 
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where 
1 2/ & /j j i i j iN x x x x N x x x x      , the trial 

function constants now are the nodal values of the dependent 

variable u , and 
iN  terms are the familiar interpolation, or 

shape, functions.  

By using quasi linearization [15], governing differential 

equation takes the form: 
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We follow the standard Galerkin’s approach and choose 

weighting function , 1,2.iw N i   Integrating over the 

entire region, we will get: 
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where 
/
 denotes differentiation with respect to y. For our 

particular problem, after substituting the trial functions into 

the equation (9), it can be written in discretized form as: 
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where ' 'e  represents the element and ' 'n  represents the 

total number of elements in the discretized region. In matrix 

notation, the system of equation (10) can be written as: 
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By applying assembly procedure given in [7, 13], and using 

equation (11) for ' 'n  elements, we will get: 
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Solving equation (15), we will get the results.    

3.  Numerical results and discussion Examples 

In this section we have graphically given the velocity field 

obtained by the finite element method described in the 

previous section. The method is implemented using Matlab. 

The influence of parameters  and  on the velocity u is 

displayed in Figs. 1 and 2. The effect of the third grade 

parameter  on the velocity field is shown in Fig. 1. Figure 1 

shows that the velocity is a decreasing function of the third 

grade parameter. Figure 2 is made to show the variation of 

parameter  on the velocity field. This Fig. elucidate that 

velocity increases by increasing the parameter . It is noted 

that the results obtained are quite comparable with those of 

[6]. 
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