HE TRICYCLIC GRAPHS WITH THE EXTREMUM ZEROTH-ORDERGENERAL RANDIC INDEX

Mahdi Sohrabi-Hghighat¹, Sirwan Vaisipour²

^{1,2} Department of Mathematics, Arak University, Arak 38156-8-8349, Iran

¹m-haghighat@araku.ac.ir, ²sirwan_vp@yahoo.com

ABSTRACT- A (n, n+2)-graph G is a connected simple graph with n vertices and n + 2 edges. If d_v denotes the degree of the vertex v, then the zeroth-order general Randic index of the graph G is defined as $R^0_{\alpha}(G) = \sum_{v \in V} d^{\alpha}_v$, where α is a real

number. We characterize, for any α , the (n, n+2)-graphs with the extremum (minimum for $0 < \alpha < 1$ and maximum for $\alpha < 0$ or $\alpha > 1$) zeroth-order general Randic index of (n, n + 2)-graphs.

Keywords: (n, n+2)-graph, zeroth-order general Randic index, degree sequence

1 INTRODUCTION

Let G = (V, E) be a simple connected graph with the vertex set V and edge set E. For any $v \in V$, N(v) denotes the neighborhood of v and $d_v = |N(v)|$ is the degree of v. The Randic index was defined [1] as, and then generalized by replacing the exponent $-\frac{1}{2}$ by an arbitrary real number α [2]. This graph invariant is called the general Randic index and denoted by R_{α} , i.e $R_{\alpha}(G) = \sum_{uv \in E} (d_u d_v)^{\alpha}$. Some results of the general Randic index can be found in [3]. Kier and Hall [4] defined the zeroth-order Randic index as $R^0(G) = \sum_{v \in V} d_v^{-\frac{1}{2}}$. Eventually LI and Zheng [5] defined

the zeroth-order general Randic index of graph G

as $R^0_{\alpha}(G) = \sum_{v \in V} d_v^{\alpha}$, for any real number α . Chen and Deng [6] characterized the (n, n+1)-graph with the maximum and minimum zeroth-order general Randic index for any real number α .

Let G(k,n) be the set of connected simple graphs have *n* vertices and the minimum degree of vertices is *k*. Pavlovic and Gutman [7] used linear programming formulation and calculated the minimum value of Randic index for G(1,n). For k = 2 the minimum value of Randic index was obtained in [8]. Li et al. [9] studied the famous conjecture of minimum Randic index for G(k,n), however, faced with a serious problem [10]. In this paper, we investigate the zeroth-order general Randic index $R^0_{\alpha}(G)$ of (n, n+2)-graphs G, i.e., connected simple graphs with *n* vertices and n+2 edges.

Figure 3: Transformation 3

Figure 4: Lemma 2.4

We use the classification of (n, n+2)-graphs given in [11] and find the extremum of $R^0_{\alpha}(G)$ in all disjoint classes. Then, the extremum of $R^0_{\alpha}(G)$ of (n, n+2)-graphs can be found by comparing the extremum of $R^0_{\alpha}(G)$ of all classes. Note that if $\alpha = 0$ then $R^0_{\alpha}(G) = n$, and if $\alpha = 1$ then $R^0_{\alpha}(G) = 2m$. Therefore in the following we always assume that $\alpha \neq 0, 1$.

2 Increasing and decreasing transformations

For convenience, we use some transformations given in [6] and some new results in order to increase or decrease the zeroth-order general Randic index.

Transformation 1: If there are two vertices *u* and *v* in *G* such that $d_u=p>1$, $d_v = q > 1$ and $p \le q$, in which, the vertices $u_1, u_2, ..., u_k$ are adjacent to *u*, then we put

 $G' = G - \{uu_1, uu_2, ..., uu_k\} + \{vu_1, vu_2, ..., vu_k\}, 1 \le k$ $\le p$, as shown in Figure 1.

Lemma 2.1. For the two graphs G and G' were defined in Transformation 1, we have

 $(\mathbf{I}) \mathbf{R}^{0}_{\alpha}(G') > \mathbf{R}^{0}_{\alpha}(G) \text{ for } \alpha < 0 \text{ or } \alpha > 1,$

(II)
$$\mathbf{R}^{0}_{\alpha}(G') < \mathbf{R}^{0}_{\alpha}(G)$$
 for $0 < \alpha < 1$.

Proof: See Ref [6].

Transformation 2: Let uv be an edge G, the degree $d_G(u)$ of u is p > 1, $N_G(v)$ is the neighborhood of v and $N_G(v)$ - $u = w_l$, w_2 , ..., w_l . We put $G' = G - \{vw_1, vw_2, ..., vw_k\} + \{uw_1, uw_2, ..., uw_k\}$, as shown in Figure 2. **Lemma 2.2.** For the two graphs *G* and *G'* were defined in Transformation 2, we have

(I) $\mathbf{R}^{0}_{\alpha}(G') > \mathbf{R}^{0}_{\alpha}(G)$ for $\alpha < 0$ or $\alpha > 1$,

(II) $\mathbf{R}^{0}_{\alpha}(G') < \mathbf{R}^{0}_{\alpha}(G)$ for $0 < \alpha < 1$.

Proof: See Ref [6].

Transformation 3: Let *G* be a graph include subgraph G_0 and the interior path *W*: $x_1x_2x_3$, with $d_G(x_2) = 2$, and vertices x_1 and x_3 do not joined in G_0 . as shown in Figure 3.

Lemma 2.3. For the two graphs G and G' were defined in Transformation 3, we have

(I)
$$\mathbf{R}^{0}_{\alpha}(G') > \mathbf{R}^{0}_{\alpha}(G)$$
 for $\alpha < 0$ or $\alpha > 1$,
 $\mathbf{R}^{0}_{\alpha}(G') = \mathbf{R}^{0}_{\alpha}(G)$ for $\alpha < 0$ or $\alpha > 1$,

(II) $\mathbf{R}^0_{\alpha}(G') < \mathbf{R}^0_{\alpha}(G)$ for $0 < \alpha < 1$.

Proof: By the definition of $\mathbf{R}^0_{\alpha}(G)$, we have

$$\Delta = R^{0}_{\alpha}(G') - R^{0}_{\alpha}(G) = [(p+1)^{\alpha} + 1^{\alpha}] - [p^{\alpha} + 2^{\alpha}] = [(p+1)^{\alpha} - p^{\alpha}] - [2^{\alpha} - 1^{\alpha}] = \alpha(\xi^{\alpha-1} - \eta^{\alpha-1})$$

where $\eta \in (1,2)$, $\xi \in (p, p+1)$ and $d_G(x_1) = p$. Since $p \ge 2$ therefore $\xi \succ \eta$ and therefore $\Delta < 0$ for $0 < \alpha < 1$ and $\Delta > 0$, for $\alpha < 0$ or $\alpha > 1$.

Lemma 2.4. For the two graphs *G* and *G'* including a cycle C_p and *k* pendant edges in Figure 4, we have (I) $\mathbf{R}^0_{\alpha}(G) > \mathbf{R}^0_{\alpha}(G')$ for $\alpha < 0$ or $\alpha > 1$, (II) $\mathbf{R}^0_{\alpha}(G) < \mathbf{R}^0_{\alpha}(G')$ for $0 < \alpha < 1$. **Proof:** Note that

$$\begin{split} &\Delta = R_{\alpha}^{\ 0}(G) - R_{\alpha}^{\ 0}(G') = [(q+k+1)^{\alpha} + 2^{\alpha}] - \\ &[(q+1)^{\alpha} + (k+2)^{\alpha}] = [(q+k+1)^{\alpha} - (q+1)^{\alpha}] \\ &-[(k+2)^{\alpha} - 2^{\alpha}] = \alpha k \ (\xi^{\alpha-1} - \eta^{\alpha-1}) \\ &\text{Where } d_{G}(u) = q, \ \eta \in (2, k+2), \xi \in (q+1, q+k+1), \text{ If } q \\ &+ 1 > k+2. \text{ Therefore } \Delta < 0 \text{ for } 0 < \alpha < 1 \text{ and } \Delta > 0, \text{ for } \\ &\alpha < 0 \text{ or } \alpha > 1. \text{ On the other hand} \\ &\Delta = R_{\alpha}^{\ 0}(G) - R_{\alpha}^{\ 0}(G') = [(q+k+1)^{\alpha} + 2^{\alpha}] - \\ &[(q+1)^{\alpha} + (k+2)^{\alpha}] = [(q+k+1)^{\alpha} - (k+2)^{\alpha}] \quad \text{Where } \\ &-[(q+1)^{\alpha} - 2^{\alpha}] = \alpha (q-1)(\xi^{\alpha-1} - \eta^{\alpha-1}) \\ &d_{G}(u) = q, \ \eta \in (2, q+1), \ \xi \in (k+2, q+k+1), \text{ If } k+2 > q+1. \\ &\text{Therefore } \Delta < 0 \text{ for } 0 < \alpha < 1 \text{ and } \Delta > 0, \text{ for } \alpha < 0 \text{ or } \alpha > 1 \\ \textbf{3 The extremum zeroth-order general Randic index of (n, n+2)-graphs} \end{split}$$

Let G(n, n + 2) be the set of simple connected graphs with *n* vertices and *n*+2 edges. In this chapter, we use the classification of G(n, n + 2) given in [11] and find an extremum zeroth-order general Randic index $R^0_{\alpha}(G)$ of each class of G(n, n + 2) (see Figure 5). The extremum (minimum for $0 < \alpha < 1$ and maximum for $\alpha < 0$ or $\alpha > 1$) of $R^0_{\alpha}(G)$ will obtain by comparing the extremum of $R^0_{\alpha}(G)$ of all classes.

To this end, we use three increasing/decreasing transformations 1, 2, 3 and the lemma 2.4, have been described in previous chapter. By using and repeating these transformations we will increase/decrease

 $R^{0}_{\alpha}(G)$ of each class of G(n, n+2) as much as possible.

Initially, repeating transformation 2, any graph *G* in G(n, n + 2) can be changed into a graph, in which, the edges not on the cycles are pendant edges. In the second step, by using Transformation 1, we reach a graph, in which, the pendant edges have been attached to a single vertex. Then we apply the Transformation 3 to minimize the length of cycles. Transformation 3 is repeated till it is possible. This step reduces the cycles to C_3 or C_4 . Now, we have a graph that all its pendant edges were attached to a set of vertices. Once again, applying the Transformation 1, we reach a graph, in which, all pendant edges have been attached to a single vertex. By using the Lemma 2.4, we give up some cases (those their pendant edges have been attached to the vertex of degree 2 of cycles). Now we calculate the R^0 (*G*) of extremal graphs in each class.

All nineteen classes of G(n, n + 2) have been Shawn in the second column of Figure 5, the third column represents the final graph(s) obtained by using the above process in each classes as described.

1 1					\$	SINTE 8	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Extremum Zeroth-order general Randic index		Final graph(s)		Original graph	Class
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$(n-1)^{n} + 6 \times 2 + (n-7)$			\mathbb{R}	L	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$?* +	$(n-3)^{n} + 5 \times 2^{n} + 4^{n} + (n-7)$			\mathbb{A}	000	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$(n-4)^{\alpha} + 5 \times 2^{\alpha} + 2 \times 3^{\alpha} + (n-8)$			$\mathbb{A}_{\mathbf{V}}$	0-00	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				<u>}</u> *4	₹	8-0	4
0 $2 \times 3^{n} + (n - 7)^{n} + 6$ 7 \sqrt{n} \sqrt{n} 8 \sqrt{n} \sqrt{n} 9 \sqrt{n} \sqrt{n} 10 \sqrt{n} \sqrt{n} 11 \sqrt{n} \sqrt{n} 12 \sqrt{n} \sqrt{n} 13 \sqrt{n} \sqrt{n} 14 \sqrt{n} \sqrt{n} 15 \sqrt{n} \sqrt{n} 16 \sqrt{n} \sqrt{n}		$(n-6)^{n} + 5 \times 2^{n} + 3 \times 3^{n} + (n-9)$			Ď¥∕∆_⊲	000	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$(n-5)^{n} + 6 \times 2^{n}$ $2 \times 3^{n} + (n-9)$			⊳₹⊲	2	6
8 9 $3 \times 3^{n} + (n - 1)^{n} + 2$ 9 $2 \times 3^{n} + (n - 1)^{n} + 2$ 10 $2 \times 3^{n} + (n - 1)^{n} + 3$ 11 $4^{n} + (n - 5)$ 11 $4^{n} + (n - 4)$ 12 $4^{n} + (n - 4)$ 13 $4^{n} + (n - 6)$ 14 $4^{n} + (n - 6)$ 15 $4^{n} + (n - 2)^{n} + 3$ 16 $4^{n} + (n - 2)^{n} + 3$	9)	$(n-5)^{\alpha} + 6 \times 2^{\alpha}$ 2 × 3 ^{\alpha} + (n - 9)				040	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$(n-3)^n + 2 \times 2^n$ $3 \times 3^n + (n-6)$				\bigcirc	8
10 10 4" + (n - 5) 11 11 11 11 12 12 11 12 13 11 12 12 14 14 15 15 15 15 15 15 16 16 15 16		$(n-1)^{\alpha} + 2 \times 2^{\alpha}$ $2 \times 3^{\alpha} + (n-5)$	Ą	Δ	\mathbf{x}	\square	9
11 11 <t< th=""><th></th><th>$(n-1)^{\alpha} + 3 \times 2^{\alpha}$ $4^{\alpha} + (n-5)$</th><th></th><th></th><th>\mathbf{x}</th><th>\bigcirc</th><th>10</th></t<>		$(n-1)^{\alpha} + 3 \times 2^{\alpha}$ $4^{\alpha} + (n-5)$			\mathbf{x}	\bigcirc	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 × 3"	$(n - 1)^{\alpha} + 3 \times 3 + (n - 4)$	$\langle \!\!\!$	\bigotimes	$\langle \!\!\!\! \rangle$	\oplus	11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$(n-4)^{n} + 3 \times 2^{n}$ $3 \times 3^{n} + (n-7)$	A	\mathbf{r}	$\bigvee\!$	$\stackrel{\circ}{\ominus}$	12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$(n-3)^{n} + 4 \times 2^{n}$ $2 \times 3^{n} + (n-7)$	\$¥\$		$ {\nleftrightarrow}$	\bigcirc	13
$16 \qquad (n-2)^* + 3$	× 2* +	$(n-1)^{*} + 4 \times 2^{*}$ $3^{*} + (n-6)$		\mathbf{x}		8	14
		$(n-2)^{*} + 3 \times 2^{*}$ $2 \times 3^{*} + (n-6)$		\bigvee	$\bigcirc \checkmark \checkmark$	\bigcirc	15
		$(n-2)^{\kappa} + 3 \times 2^{\kappa}$ $2 \times 3^{\kappa} + (n-6)$			Ø	\bigcirc	16
		$(n-3)^{n} + 2 \times 2^{n}$ $3 \times 3^{n} + (n-6)$			\mathbf{P}	\bigcirc	17
		$(n-4)^{n} + 3 \times 2^{n}$ $3 \times 3^{n} + (n-7)$			\mathbf{P}	\bigcirc	18
		$(n-2)^n + 3 \times 2^n$ $2 \times 3^n + (n-6)$	$\langle $	\bigotimes	\mathbf{A}	\bigcirc	19

Figure 5: Original graph, Final graph(s) and The extremum zeroth-order general Randic index in 19 classes.

The forth column represents the extremum zeroth-order general Randic index of classes (maximum for $0 < \alpha < 1$ and minimum for $\alpha < 0$ or $\alpha > 1$). For any real number α , the extremum zeroth-order general Randic index can be found by comparing the values of forth column. As an example, the maximum zeroth-order general Randic index for $\alpha = 0.5$ and n=15 is equals 21.509861 which is related to class 7.

REFERENCES

- [1] M. Randic, On the characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609-6615.
- [2] L.B. Kier, L.H. Hall, Molecular Connectivity in Structure-analysis, *Re-search Studies Press, Wiley, Chichester*, UK, 1986.
- [3] X.Li and H. Zaho, Trees with the rst three smallest and largest gener-alized topological indices, *MATCH Commun.Math. Comput.Chem.* 52 (2004) 157-210.
- [4] L.B. Kier, L.H. Hall, The nature of struture-activity relationships and their relation to molecular Connectivity, *Eur. J. Med. Chem.* 12 (1977) 307-312.
- [5] X. Li and J. Zheng, A uniedaooroach to the extremal trees for di rent indices, *MATCH Commun. Math. Comput. Chem.* 54 (2005) 195-208.
- [6] S. Chen and H. Deng, Extremal (n, n + 1)-graphs

with respected to zeroth- order general Randic index, J. Math. chem. (2006) 555-564.

- [7] L. Pavlovic, I. Gutman, Graphs with extermal connectivity index, *Novi. Sad. J. Math*, Vol. 31, No. 2, (2001) 53-58.
- [8] L. Pavlovic, Graph with external Randic index when the minimum degree of vertices is two, *Kragujevac J. Math.* 25 (2003) 55-63.
- [9] X. Li, B. Liu, J. Liu, Complete solution to a conjecture on Randic index, *European Journal of Operational Research*, 200 (2010) 9-13.
- [10] L. Pavlovic, Comment on Complete solution to a conjecture on Randic index, *European Journal of Operational Research*, 207 (2010) 539-542.
- [11] A. Dolati, M. Haghighat, S. Golalizadeh, M. Safari: The Smallest Hosoya Index of Connected Tricyclic Graphs, *MACTH Commun. Math. Comput. Chem.* 65(2011) 57-70.