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ABSTRACT: In this paper, we give a wide range of Hardy-type inequalities for linear differential operator and Widder's
derivatives. As an application of Hardy-type inequalities we extract the inequalities related to inequality of G. H. Hardy

involving linear differential operator and Widder's derivatives.
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INTRODUCTION
Let (€2,%,,24) and (Q,,Z,, 14,) be measure spaces with

o -finite measures. Let U(f,k) denote the class of

function g :€Q; — R belongs to the class if it admits the
representation

g0) = [k(x ) f(t)d (1)
2
and A, be an integral operator defined by

AT(x )—%-mjux O (1),

where k:Q xQ, >R

f :Q, — R is measurable function on ., and

0<K(X) = Ik(x,t)dyz(t), xeQ,

Q

(1.1)

is measurable and non-negative

kernel,

(1.2)

Cizmeéija, Kruli¢, Pecari¢ and Persson has established a lot
of Hardy-type inequalities in their recent papers [6], [7]
which is a remarkable contribution in theory of inequalities.
But our purpose is to give such Hardy-type inequalities for
linear differential operator and Widder's derivative.

The following theorem is give in [6](see also [2]).
Theorem 1.1. Let (€,%,z4) and (Q,,%,,1,) be
measure spaces with o -finite measures, U be a weight
function on Ql, K be a non-negative measurable function

on Q xQ,, and K be defined on €, by (1.2). Suppose

X, 1)

_ k( .
that the function X > u(x)m is integrable on €, for
X

each fixed t € QQ, and V is defined on €2, by

(X)k(x.)
V()= [ TR d gy () < oo
il K(x)

If @ isconvex onthe interval | < R, then the inequality

(1.3)

JUCIP(A f(9)du(x) < [VO(f©)di ()
Q Q,
holds for all measurable functions f :€2, — R, such that
Imf < I, where A, is defined by (1.1).

Substitute K(x,t) by K(x,t)f,(t) and f by %,

2
where f:Q. —> R, (i =1 2)are measurable functions in
Theorem 1.1 we obtain the following result (see [4]).
Theorem 1.2. Let (€,%,,z4) and (Q,,%,,1,) be
measure spaces with o -finite measures, U be a weight
function on €, K be a non-negative measurable function

k(x,t)
92(X)
is integrable on €, for each fixed t € ),. Defined V on
Q, by

on Q, xQ,. Assusme that the function X > U(X)

v(t) = f (t)j UOOKEY) ) () < oo,

0,00 o
If ®:1 —>R isaconvex function and 9.(x) T (X) ,
g, ()" f (X)
then the inequality
9,(x)
o =2~ |(d
Jl u(x) (gz (X)] (%)
f.(x)
< szv(t)cl)[ 3 (X)]duz (®),

holds for all g; eU(f,,k), (i=12)and for measurable
functions f : Q3. > R, (1=12).

The following theorem is given in [3].
Theorem 1.3. Let U be a weight function on Q,, K be a

non-negative measurable function on €2, x€2,, and K be
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defined on €, by (1.2). Assume that the function

K(x,t
XI—)U(X)M is integrable on €}, for each fixed
K(x)

teQ, and that V is defined on Q, by (1.3). If

®:(0,0) > R is a convex and increasing function, then
the inequality

ju(x)q{ g(( ))jd,ul(x)s jv(t)d)(f(t))dyz(t),

holds for all measurable functions f :Q2 — R, and for all
g eU(f,k).

f
Substitute  k(x,t) by K(x,t)f,(t) and f by f—l
2
where f:Q, >R, (i=12) are measurable functions in
Theorem 1.3, we obtain the following result (see [5]).
Theorem 1.4. Let f, :QQ— R be measurable functions,

g, eU(f k), (i
X € Q). Let U be a weight function on Q;, K be a non-

=1,2), where ¢,(x)>0 for every

negative measurable function on €, x€2,. Assusme that the
f,(t)k(x,t)
K(x)
each fixed teQ,. Defined V on Q, by (14). If
®:(0,0) — R is a convex and incresing function, then

the inequality
[ u(x)@(wa 14,(%)

o 9,(x)
] d Hy (1),
holds.

< J.v(t)CD R
f,(x)
Remark 1.5. If @ is strictly convex and M is non-
()

constant, then inequalities given in Theorem 1.2 and Theorem
1.4 are strict.

Theorem 1.6. Let 0 < p<q<ooand let the assumptions
of Theorem 1.1 be satisfied but now with

function X — u(X) is integrable on €2, for

k(x.t) )° ’
K(X)] du(x) | <o

If ® is a non-negative convex function on the interval
| € R, then the inequality

v(t) = _[ u(x)[

ISSN 1013-5316;CODEN: SINTE 8

3414

JuCO[® (A (x))]e d s ()

[vin® () dum(y) |

holds for all measurable functions f :Q, >R such

that Im f < 1, where A isdefined by (1.1).
The upcoming theoremis given in [7].
Theorem 17. Let 0< p<Qg<oo. Let (Q,%, 1)
and (€2,,Z,,44,) be measure spaces with o -finite
measures, U be a weight function on €2, @ bea u,-ae.
positiv function on QZ, K be a non-negative measurable
function on €2, x€2,, and K be defined on €2, by (1.2).
Suppose that the K(x) >0 for all X €€}, and that the
g

p
function X u(X) k(xH is integrable on Q, for
K(x)

each fixed t € Q2,. Let @ be a non-negative convex function

onaninterval | c R . If

A:supa)_?(t) J'u(x)(k()(( t))j dz(X) | <oo,then

there exists a poistive real number C such that the inequality

( [uo[@(AF(0)]r dul(x)}q

< [ [oyyo(f (y))dyz(y)] (1.5)

Holds for all measurable functions f :Q, — R with the
values in | and Akf be defined by (1.1). Moreover if C is

smaller constant for (1.5) to hold, then C < A.
Our analysis continues by providing a new two-
parametric class of sufficient conditions for a weighted

modular inequality involving the operator A, to
hold. The conditions obtained depend on a real

parameter S and a positive function V on Q2.

Next result is given in [7].
Theorem 18. Letl< p<¢<oo. Let (,%,,24) and
(€2,,%,, 1,) be measure spaces with o -finite measures, u

be a weight function on Ql, V be a measurable £, —a.e.
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positive function on €2,, k be a non-negative measurable
function on €2, x€Q2,, and K be defined on Q, by (1.2). Let
K(x)>0 forall xe Qland let the function

—u(x) k(x t) is integrable on ), for each fixed
K(x) !

teQ,. Suppose that d: 1 —[0,0)is a

convex function on an interval | < R . If there exists a real
parameter S e (1, p)and positve measurable function

V:Q, >R such that

bijective

s

A(s,V)=F(V,v)supV ° (y)

teQ),

xju(x)[ké)(( ))j de(x) | <oo
Q

Ks(2)

)< ————| L
v(a )<(( n(b))l‘/} ”

-p (s-1)

FV,v)=|V °

|f

where

OV (D)d 1, (1)

and p' is exponent conjugate of p, thre exists a positive real
constant C such that the inequality

Juco[@(AF(0)]"du(x)

<C| Jo@' (f(y)dm(y) | . (L6)

holds for all measurable function f :Q), — Rwith the

values in I and A, f be defined by (1.1). Moreover if C is

smaller constant for (1.6) to hold, then
C<inf A(sV).

1<s<p
V>0

Modification of tTheorem 1.8 give the next result and is
given in [7].
Theorem19.Let 1< p<g<oo, 1<s<p, and O<b<
. Let U be a weight function on (0,b), @be an a.e. positive
measurable function on (0,b), k be a non-negative
measurable function on (0,b) x (0,b) and
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0< K(x) :=Jx'k(x,t)dt, x € (0,b).

Let I be an interval inR and @ : 1 —[0,0) be a bijective
convex function. If

t
V(t) = Ia)l’p (X)x"dx < 0
0

holds almost everywhere in (0,b), and
J-U(X)(k(x t)j v
: K(x)
s-1

xV P (t) < oo,
then there exists a positive real constant C such that

(ju(x)[@ A () “dx]

dx

A=sup ( )?

O<t<b

sc[jw(x)mp(f(x))%Jp,

holds for all measurable functions f :(0,b) — R with the

1.7)

values in | and the Hardy-type operator A< f defined by

A f(x)= ﬁjk(x,t) f (t)dt, x e (0,h).

Moreover if C is the best possible constant in (1.7), then

P 1) A(s).
p_

New general refined weighted Hardy-type inequality
with a non-negative kernel, related to an arbitrary
non-negative convex function is given in the upcoming
theorem and is given in [6].

reR,, (Q

Theorem 1.10 Let 120 A4)

(€2,,%,, 1,) be measure spaces with o -finite measures, u

(18)

l<s<p

C<|nf(

and

be a weight function on €Q,, K be a non-negative

measurable function on €, x€2,, and K be defined on €2, by
(1.2). Suppose that the K (x) >0 for all X € €2, and that thte

function
k(x,t) )
X+ u(x)[ K(X) j

is integrable on €, for each fixed t €, and that v is
defined by

v(t) = ju(x)[

k(x,1)

K(x )j d(X) | <o
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If @ is a non-negative convex function on an interval
IcRand ¢@:1 >R is any function, such that

@(X) € 0D(x) forall X € Int | , then the inequality

[vo(f)d (t)} -

Q

j u)[@(AF ()] dM(X)]

U0 e
>7 jK()cD (AT ()

x k(1) r(x,t)d s (t)d 4 (X)
2

holds for 7 >1 and all measurable functions f : Q2, >R

with the values in |, where A, f be defined by (1.1) and the

function I : Q) xQ, — R is defined by
r(x,t) I[@(f (1) - (A f ()]~
[ (AT ON-(F O - ATl (1.10)

If 7e(0,]and the function®: | — R is positive and

concave, then the order of term on the left hand side of
inequality (1.9), is reversed, that is, the inequality

(I W[ @(A F())] dﬂl(x)]

(1.9)

—{ | v(t)cb(f(t))duz(t)} 2 [ r O (AT ()
x j k(x,t) r(x,t)d s, (t)d i (X)

holtzjs.

Let the function I} : €, xQ), — R be defined by

n(x,t) =[®(f () - P(Af (x)) -

| (AT O [-(f (1) - A F ()] (1.12)

If @ is a non-negative monotone convex function on the
interval | —Rand ¢:1 — R is any function, such that

@(X) € 0D(x) for all X € Intl, then the inequality

( [vyo(f(©)d s, (t)}

Q

[IU(X)[CD(Ak f))] d,LLl(X)J
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 K(X)

><k(x, t) r(x,t)d g, (t)d z4,(x) (1.12)
holds for all measurable functions f :€2, — Rsuch that

f(t)e!l forall fixed t €2, where A f be defined by

(1.2)
If @ is non-negative monotone concave, then the order of
the terms on the left hand side of (1.12) is reversed.

In [6], the next theorem with one dimensional is given.

Theorem 1.11. Let O<b<w and
k :(O,b)x(O, b) —-R,u :(O,b) — R be non-negative

function and
P

I U(X) 2\ - l(Akf(x))Isgn(f(t)—A(f(x))

measurable

k(1) %% q <o, te(0,b)
K(x) ) X ’ ’

If O<p<qg<o, Of —o<q=<p<0, @ is non-
negative convex function on the interval | < Rand
@:1 >R is any function ¢@(x)eod(x)for all
X e Intl, then the

Ua)(t)cb (f®) J (ju(x)[cb Af())]e j

qpux) o
> !K()CD (&f(x))jk(xt)r(xt)dt

holds for all measurable functlons f:(0,b) >R with

w(t) =t j‘u(x)[
inequality

(1.13)

values in | , where A<f and I are respectively defined by

(1.8) and (1.10).
If @ is non-negative monotone convex function on the
interval | R and ¢@:1 — R is that ¢(X) € 0D(X) for

all X e Intl, then the
[ja)(t)qa(f(t) } [ju(x)[qa Akf(x)] J

g bu(x) (DE_l f
>y ® (AT

j sgn( f (t) = A f ())k(x,t) rl(x,t)dtd—;(| (1.14)

holds for all measeurable functions f :(0,b) — R such that

f(t)el for all fixed teQ, where A f and rbe
defined by (1.8) and (1.11) respectively .

inequality
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If O<p<g<ow, or—0o<q<p<0,® is non-
negative (monotone) convex function then (1.13) and (1.14)
holds with reverse order of integrals on its left hand side.

The rest of the paper is organized in the following way: In
Section 2, we prove new Hardy-type and refined Hardy-type
inequalities involving linear differential operator. We also
establish the inequalities related to inequality of G. H. Hardy.
Section 3 deals with the Hardy-type, refined Hardy-type and
inequality related to inequality of G. H. Hardy for Widder’s
derivative.

2.0 POINCARE LIKE INEQUALITIES FOR
LINEAR DIFFERENTIAL OPERATOR

Let [a,b]= R, a(x),i=1,..,n—=1(neN), and h(x)

be continuous functions on [a,b], and let
L=D"+a,,(X)D"" +...+a,(x),

be a fixed linear differential operator on C"[a,b]. Let

Y;(X), ..., ¥, (X) be aset of linearly independent solution to

Ly = O and the associated Green’s function for L is

(1) Y, ()
(0 .0
y 2 (1) y{" 2 (1)
B y,()
D= 0 vo| &Y
(0 .0
yo 1) Yo 1)
%) Y, ()

which is continuous function on [a,b]?. Consider fixed a,
then

y(x) = TH (x,t)h(t)dt, forall xela,b]

is the unique solution to the initial value problem

Ly=h, y®@=0, i=01,..,n-1.

Now we present the Poincaré like inequality for linear
differential operators.

Theorem 2.1 Let U be a weight function on (a,b), H bea
positive Green function associated to the linear differential
H(x,t) "

operator L. Suppose that the function X > U(X) A0
X
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integrable on (@,b) for each fixed t € (a, b), and that V is
defined on (a,b) by

u(x)H (x,t)
v(t) = | ——"2du(X) <o 2.2
(t) j Aoy 0 (22)

If @ isconvex ontheinterval | — R, then the inequality

b 1 X
! u(x)® [m j H (X, t)h(t)dt}dx

< j.v(t)CD(h(t))dt, (2.3)

holds for all measurable functions f :(a,b) — R such that

Imhc I, where | is defined as:

H(x) = j H (x, t)dt (2.9)

Proof. Applying Theorem 11 with
Q, =0, =(a,b), dz(x)=dx, du,(y)=dyand

K(X,t) = H(X,t) we obtain inequality (2.3).
We continue with the inequality of G. H. Hardy. Igbal
et.al. in their paper [3] proved the inequality of G. H. Hardy

but here our purpose is to establish the inequality related to
inequality of G. H. Hardy for linear differential operator.

Remark 2.2. Choose the particular convex function
d(x)=x", v=>1 and weight function u(x)=H(x,t)
in Theorem 2.1 we get

TH (x)+ UH (x,t)h(t)dt]v dx

< iKl(t)hV (t)dt. (2.5)

Inequality (2.5) gives
b b
H (b)* j y" (X)dx <K, (a) j h” (t)dt.
This implies that : )

1

K@) |
Stk

If we substitute H (X,t) by H(x,t)h,(t) and h by%
2

Iy ,(@b).

, where h:(a,b) >R, (1=1,2) are measurable
functions in Theorem 2.1 we obtain the following result.

Theorem 2.3 Let U be a weight function on (a,b), H be
a positive Green function associated to the linear differential
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H(x,1t)
Y>(X)
is integrable on (a,b) for each fixed t € (a,b), and that W

is defined on (a,b) by

w(t) = h, (t) ju(x)

tf d:1 >R is a

operator L. Suppose that the function X > u(X)

)

dx < oo

(2.6)

convex  function and

%) hl() , then the inequality
Y,(x)"h ()

¥, (X) h, (t)
IU(X)CD(yZ(x)jdX J.W(t)CD[h ())dt (2.7)
holds for all y,eU(h,H),(i=12) and for all

measurable functions h :(a,b) > R, (i=1,2).

Here we give Hardy-type inequalities for linear differential
operators involving convex and increasing function.

Theorem 2.4 Let U be a weight function on (a,b), H be
a positive Green function associated to the linear differential

H(x,t)
H(x)
is integrable on (@,b) for each fixed t € (a,b), and that v
is defined on (a,b) by (2.2). If ®:(0,0) >R is
convex and increasing function, then the inequality

Tu(x)(b{ de

operator L. Suppose that the function X > U(X)

1 X
T j H (x,t)h(t)dt

b
< _[v(t)CD(| h(t) [)dt, (2.8)
a
holds for all measurable functions h:(a,b) — P, such
that Imhc | where H is defined by (2.4).
Proof. Applying Theorem 1.3 with €, =Q, =(a,b),

deg(X) =dx, dg,(t)=dt and k(x,t) = H(x,t) we
obtain inequality (2.8).

Remark 2.5. Choose the particular convex function
®(x) = x", v=1 and weight function u(x) = H(x) in

b
Theorem 2.4 we get V(t) = .[H (x,t)dx =: K, (t) and
t

de

IH (x, )h(t)dt

J'l_”l (X)l—v(

< j‘Kz(t) Ih@®)|" dt.

(2.9)

a
Inequality (2.9) gives

ISSN 1013-5316;CODEN: SINTE 8

3418

HO)™ [y I dx< K, (@] [h@) " dt

This imple;es that
( K, (@) j
(H()""

If we substitute H (x,t) by H(x,t)h,(t) and h by %

2

(ab).

where h :(a,b) > R, (i =1,2) are measurable functions

in Theorem 2.4 we obtain the following result.
Theorem 2.6 Let U be a weight function on (a,b), H be
a positive Green function associated to the linear differential

H(x,1t)
Y>(X)

is integrable on (a,b) for each fixed t € (a,b), and that W
is defined on (a,b) by (2.6). If ®:(0,0) >R is

operator L. Suppose that the function X > u(X)

convex and increasing fuctionn and ¥:i(x) h(0) e |, then
Y,(¥) " hy (t)
the inequality
b Ay h, ()
!u(x)q)[ y2(X)Ddx < _!:W(t)CD( (0 Jdt
holds for all y, eU(h,H),(i=12) and for all

measurable functions h :(a,b) > R, (1=1,2).

The upcoming theorem is the generalization of Theorem
2.1 for linear differential operator.

Theorem 2.7 Let U be a weight function on (a,b), H be
a positive Green function associated to the linear differential
operator L. Let O0< p<(Q<oo and that the function

a
H(x,t) |p
X u(x) ~( ) is integrable on (@,b) for each
H (x)
fixed t € (a,b), and that V is defined on (a,b) by
p

v(t) = ju(x)(HH(z( ;)J dx

If @ is a non-negative convex function on the interval
I — R, then the inequality

< 00,
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a q

b 1 X p
_Iu(x){d)(m J;H (x,t)h(t)dtﬂ dx

st(t)cp(h(t))dt]p,

holds for all measurable functions h:(a,b) — R, such that
Imh < 1, where H is defined by (2.4).

Proof. Applying Theorem 1.6 with Q, =Q, =(a,b),
deg (X) =dx, du,(t)=dt and k(x,t) = H(x,t), we
obtain inequality (2.10).

Remark 2.8.

(2.10)

Choose ®(x)=x", v=1 and
]
u(x)=(H(X))* in  Theorem 27 we  get

P

v(t) = Uj‘ H (x,t))p dX] =:K,(t) and we obtain

FoRN

vq

T(ﬁ o) ?’(IH (x, t)h(t)dtJ dx

1

< [ ng(t)hV(t)dth.

Inequality (2.11) gives

(2.12)

vq

H (b) ( jy (x)dx] < K,(a) jh (t)dt.

Now we provide a new class of sufficient conditions on
weight functions U and W, and on a Green function H ,
for a modular inequality involving linear differential
operator in next theorem.

Theorem 2.9 Let 0< p<(Qq<oo. Let U be a weight
function on (a,b), W be a positive function on (a,b), H

be a positive measurable function on (a,b)x (a,b), and H
be defined on (a,b) by (2.4) . Suppose that H (x) >0 for

H(x,t) %
i)
is integrable on (a,b) for each fixed t € (a,b). Let @ be
a non-negative convex function on an interval | C R . If

all X e (a,b) and that the function X > u(x)[
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< oo

v oo g o

then there exists a positive real constant C, such that the
inequality

Uu(x)q)g (ﬁJ&H (X, t)h(t)dt]dx]q
<C (j).w(t)dD(h(t))dt}p

holds for all measurable functions h:(a,b) > R with

(212)

values in |. Moreover, if C is the smallest constant for
(2.12) to hold, then C < A.

Proof. Applying Theorem 1.7 with €, =Q, =(a,b),
deg (X) =dx, du,(t)=dt and k(x,t)=H(x1t) we
obtain inequality (2.12).

Now we provide two-parametric class of sufficient
conditions for a weighted modular inequality involving
linear differential operator to hold.

Theorem 2.10 Let 1< p<g<oo. Let U be a weight
function on (@,b), V be a measurable positive function on
(a,b), H
(a,b)x(a,b),and H be defined on (a,b) by (2.4) . Let
H(x)>0 for all xe(ab) and
X s u(x)[ HH(Z(;(;) jq be integrable on (a,b) for each fixed
te(a,b). Suppose that ®: 1 —[0,0) is a bijective
convex function on an interval | < R . If there exist a real
parameter S e (1, p) and a positive measurable function
V :(a,b) > R such that

be a positive measurable function on

let the function

s

A(s,V)=F(V,v)supV P (t)

te(a,b)

g

1

where

O (t)dth ,

b —p(s-1)

F(\/,v)=UV P

then there is a positive real constant C such that the
inequality
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b . 1 X q
( !u(x)cp (W j H (x,t)h(t)dtjdx}

<C (iv(t)q)" (h(t))dth

holds for all measurable functions h:(a,b) - R with

(2.13)

values in |. Moreover, if C is the best possible constant in
(2.13), then
C< inf A(s,V). (2.14)
o
Proof. Applying Theorem 1.8 with Q, =Q, = (a,b),

deg (X) =dx, du,(t)=dt and k(x,t)=H(x1t) we
obtain inequality (2.14).

By modifying Theorem 2.10, we obtain the following result.
Theorem 2.11 Let 1< p<g<o, 1<s<p, and

O<b<oo.Let U be aweight function on (0,b), W be a
positive measurable function on (0,b), and H be a positive
measurable function on (0,b) = (0,b). Let | be an interval
in R and @ : 1 —[0,0) be a bijective convex function. If

V() = jwl-p’(x)xp’-ldx < o0

holds almost everywhere in (0,b) and

b a4 q(p-s) %
=gl ol e v o
XV%(t)<OO,

there exists a positive real constant C such that

p f 17 dx |
( -([u(x)CD (W j H(x,t)h(t)dtJy]

1

<C [ Iw(x)@p(h(x))d—;jp

holds for all measurable functions h:(0,b) >R with

values in |. Moreover, if C is the best possible constant in
(2.15), then

(2.15)

1
C<inf (p—_llp A).
1<s<p| P—S$
Proof. Applying Theorem 1.9 with Q, =Q, =(a,b),
dey(X) =dx, dg,(t)=dt and k(x,t) = H(x,t) we
obtain inequality (2.15).
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Now we give refined Hardy-type inequalities involving
linear differential operator for an arbitrary non-negative
convex function in the following theorem.

Theorem 2.12 Let 7 € R, U be a weight function on €,
H a non-negative measurable function on (a,b)x(a,b),

and H be defined on (a,b) by (2.4). Suppose that

H(x)>0 for all xe(ab), that the function
Hx,t))

X > u(x) is integrable on (a,b) for each
H (x)

fixed t € (a,b), and that V is defined on (a,b) by

v(t) = ( ju(x)[ HH(Z‘)'(;)J deT .

If @ is a non-negative convex function on an interval
IcR and ®:1 >R is any function, such that
@(X) € 6D(x) forall X € Intl, then the inequality

b T p ] 1 X
( '!:v(t)CD( f (t))dtj - _!:u(x)CD (W j H (x,t)h(t)dtde

b (X) l X
j ~ (I:I(x) _!:H (x,t)h(t)dt]

x j H (x,t)r(x,t)dtdx (2.16)

measurable functions
and the function

holds for all 72>1 and all
h:(a,b) >R with values in 1,
r:(a,b)x(a,b) > R is defined by

_ 1 ¢
r(xt) = |@(h(t)) —q{m j H (x,t)h(t)dt}

1 X
(/)[m j H (x,t)h(t)dt] :

h(t)-ﬁlmx,t)h(t)dt .

(2.17)

If 7€(0,1] and the function @ : 1 — R is positive and

concave, then the order of terms on the left-hand side of
(2.16) is reversed, that is, the inequality

b ] 1 b T
ju(x)cb (H—X) | H(x,t)h(t)dt]dx—[ _[v(t)CD(h(t))dtJ

¢ u(x)
IH(x) [H( )jH(x t)h(t)dtj

xIH(x,t)r(x,t)dtdx

(2.18)

holds.
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Let the function I, :(a,b)x(a,b) >R is defined by

_ 1 7
I (x,t) = @(h(t)) _CD[W j H (x,t)h(t)dtJ

1 % 1 7
(p[% j H (x,t)h(t)dtj -[h(t) T j H (x,t)h(t)dt]. (2.19)

If @ is non-negative monotone convex on the interval
IcR, and ¢@:1 >R is any function, such that

@(X) € 6D(x) forall X € Intl, then the inequality

@v(t)db (h(t)) dy]r

_iu(x)qy (L [ (x,t)h(t)dtde

lJ- u(x)

= (X) [H( )IH (x, t)h(t)dt]

xjsgn(h(t) —ij (x,t)h(t)dtj

xH (X, t)r,(x, t)dtdx | (2.20)
holds for all measurable functions h:(a,b) — R, such that
h(t) e I, forall fixed t € (a,b).

If @ is non-negative monotone concave, then the order of
terms on the left-hand side of (2.20) is reversed.

Proof. Applying Theorem 1.10 with €, =Q, = (a,b),
deg (X) =dx, du,(t)=dt and k(x,t)=H(x1t) we
obtain inequalities (2.16) and (2.20).

We start with the standard one-dimensional setting, that is,
by considering intervals in R and the Lebesgue measure,
and obtain generalized refined Hardy and Polya—Knopp-type
inequalities for linear differential operator.

Theorem 2.13 Let O<b<w and
k:(0,b)x(0,b) >R, u:(0,b) >R be non-negative
measurable functions and

H (X, t)
H (x) X
If 0<p<g<w or —0<qQ<p<0, ® is a non-
negative convex function on an interval | R, and

@:1 —> R is such that ¢(x) € 0D(x) for all x € Intl,
then the inequality

[iw(t)cp(h(t))ﬁ]p —Tu(x)cpg [in (x,t)h(t)dtj%

w(t) =t ju(x)[ < oo, t e (0,b).
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(X)
jH(X) (H( )jH (X, t)h(t)dt]

x j H (x,t)r(x,t)dt% (2.22)

holds for all measurable functions h:(0,b) >R with
values in | and I is defined by (2.17). If @ is non-

negative monotone convex on the interval | R and
@:1 >R is that ¢(X) € 0D(x) for all x e Intl, then
the following inequality
q
" dt |°
[jw(t)op(h(t))T
0
b 9
—Iu(x)CDp j%
X
L4 ; >
2 [=L e H (x, t)h(t)dt]
P !H (H( j
1
x[sgn| h(t) - —=— H(x,t)h(t)dtj
0555
dx
xH (X, )1 (X, t)dt— | (2.22)
X

holds for all measurable functions h: (0,b) — R, such that

h(t)el, for all fixed te(0,b) and r, is defined by
(2.19).

If 0<g<p<owor —o<p<g<0,and ® isa non-
negative (monotone) concave function, then (2.21) and
(2.22) hold with the reversed order of integrals on its left-
hand side.

Proof. Applying Theorem 1.11 with €, =Q, =(a,b),
deg(X) =dx, dg,(t)=dt and k(x,t) = H(x,t) we
obtain inequalities (2.21) and (2.22).

3.0 HARDY-TYPE INEQUALITIES FOR
WIDDER;S DERIVATIVE

First it is necessary to give some important details about
Widder’s derivatives (see[8]).

Let  f,up,u,...,u, eC"[a,b],n>0,
Wronskians

and the
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W, (X) 1= W U (X), uy (X),..., u; (X)]

Uy (X) u; (x)
Uy'(X) u;'(x)
u (x) u” (x)

i=0,1,...,n. Here Wy(X) =U,(X). Assume W, (x) >0
over [a,b],i=0,1,...,n. For i>0, the differential
operator of order i (Widder derivative):
L1y W00 100U, (9. £ 00

Wi (x)
1=1,...,n+1; L, f(x) = f(X)

for all x €[a,b]. Consider also

Uy (t) u; (t)

Uy () u; (t)
gixt = W, ()| - . N

Uy (X) U; (X)
i=1,2,..n go(x,t):zl:';((tx))

forall x,t €[a,b].

Example 3.1 [8]. Sets of the form {U,,U,,U,,...,U,} are
{1,x,%%,...,x"},

{1,sin x,—cos X, —sin 2x,c0s 2X,...,(-1)""

sinnx, (—1)"" cosnx}, etc

We also mention the generalized Widder-Taylor’s formula,

see [8](see also [1]).
Theorem 3.2 Let the functions

f,Ug,U,...,u, €eC"[a,b], and the Wronkians
W, (x),W,(x),...,W,(x) >0 on [a,b],xe[a,b]. Then

for te[a,b] we have
¢y Yo (X)
f(x)= f(t) o +L, f(t)g,(xt)+...
+L, ()9, (x.0) + R (x),
where

R,00:= [0, (% 5)L,. T (9)ds.
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For example (see [8]) one could take U,(X)=c>0. If
u,(x) = x',i=0,1,...,n, defined on [a,b], then

Lft)=fO(t) and g,(x.t) = @ te[a,b].
I!
We need the following corollary.

Corollary 3.3 By additionally assuming for fixed a that
L f(a)=0,i=0,1,..,n, we get that

f(x):= ign(x,t) L f@)dt forallx[a,b].

The proofs of all results in this section can be completed
by taking Q, =Q, =(a,b), dgg(x) =dx, du,(t) =dt
and K(x,t) =g, (x,t) in all theorems given in Section 1

but we omit the details.

Now we prove Hardy-type inequalities for Widder’s
derivative.
Theorem 3.4 Let the assumptions of the Corollary 3.3 be

satisfied. Let U be a weight function on (a,b), g, be a
positive measurable function on (a,b)x(a,b). Suppose
9n(X,1)

~n
(a,b) for each fixed t e (a,b), and that V be defined on
(a,b) by

b

_u(0)g, (x0)
0=

If @ isconvex on the interval | < R, then the inequality

b l X
!u(x)CD (m j g9, (L, f (t)dtjdx

that the function X+ u(X) is integrable on

dx < 0. (3.1)

< 'Tv(t)d)(LMf (t))dt,

holds for all measurable functions L., f:(a,b) >R,

suchthat ImL,,, f < I, where §, is defined as

n+1

d,(x) = J.gn(x,t)dx < o,

Remark 3.5 Choose the particular convex function
®(x) =x", v =1 and weight function u(x) =g, (X) in

(3.2)

b
Theorem 3.4 we get V(t) = Ign(x,t)dx =:K,(t) and we
t

obtain
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Tgn (x)"” Ugn x,tL,,,f (t)dtj dx

(33)

< .TK4(t) L., f"(t)dt.

In;quality (3.3) gives

g, (b)l‘vjb[f "(x)dx <K, (a)_b[Ln+l f"(t)dt.
We have tahat )

K,
| ) < [ﬁ] ||Ln+lf ||v (a' b)

Now we give the Hardy-type inequality involving
Widder’s derivative in quotients. For this if we substitute

g,(x,t) by g,(x,t)L,,f,(t) and f by "=+

Loafy , Where
n+l "2

L.,f.:(ab)—>R, (i=1,2) are measurable functions in

Theorem 3.4 we obtain the following result.

Theorem 3.6 Let the assumptions of the Corollary 3.3 be

satisfied. Let U be a weight function on (a,b), g, be a
positive measurable function on (&,b) x (a,b). Assume that

) 9, (x.1)

the function X > u(X is integrable on (a,b)

Ln+1 fz(x)
for each fixed t € (a b). Define vV on (a,b) by
_ g, (X,1)
v(t):=L, @) u(x) ————dx <. (3.4)
' J. n+1f ( )
If ®:1—>R is a convex function and

fl(x) I-n+l fl(t)

f,00 " Ly f,(0)
b B0 )i < fuctyp| L ful®
;[u(x)CI{f ) desj.v(t)CD( L.f ()]dt

holds for all f, eU(L,,f,d,),(i=12) and for all

measurable functions L, f, 1 (a,b) > R,. (i=1,2).

€ |, then the inequality

Now we prove Hardy-type inequalities for Widder’s
derivative involving convex and increasing function.
Theorem 3.7 Let the assumptions of the Corollary 3.3 be

satisfied. Let U be a weight function on (a,b), g, be a
positive measurable function on (a,b)x(a,b). Suppose

that the function X,ﬁu(x)M is integrable on
n ()

(a,b) for each fixed t e (a, b), and that V is defined on

(a,b) by (3.1). If @ is convex and increasing on the

interval | < R, then the inequality
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de

holds for all measurable functions L., f:(a,b) >R,

suchthat ImL,,, f < I, where §, is defined by (3.2).
Remark 3.8  Choose the particular convex function
®(x) =x", v =1 and weight function u(x)=g,(x) in

!u(x)d)( ;

< -b[v(t)(D(| L,..f () [)dt,

] LECRIOL

n

b
Theorem 3.7 we get V(t) = Ign(x,t)dx =:K,(t) and we

fo. (6 0L (t)dtJ dx

[ gn(x>“( X

obtain ?
b
< j K ()| L, f"(t)]dt. (35)
Inequality (3.5) gives
b b
G, () [1 F )1 dx < Ky(@)] |, f (1) | dt.
We have that
1
Ks(a)
)S( b 1vj ||
(9,(0))
Now we give the Hardy-type inequality involving

Widder’s derivative in quotients for convex and increasing

function. For this if we substitute g,(X,t) by
L..f

g,(x 0L, f,t) and f by L”+—11 where
n+l "2

L..f:(ab)—>R,(i=1,2) are measurable functions in

Theorem 3.7 we obtain the following result.
Theorem 3.9 Let the assumptions of the Corollary 3.3 be

satisfied. Let U be a weight function on (a,b), g, be a
positive measurable function on (&, b) x (a,b). Assume that
)-9a(%0)
Ly (%)
for each fixed t € (a,b) and define V on (@,b) by (3.4).
If ®:1 >R is a convex and increasing function and

f.(x) L., f()

the function X > u(x is integrable on (a,b)

, € |, then the inequality
1Ez(X) L. fo (1)

o el

n+1f (t)
n+1f (t)
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holds for all f, eU(L,,;f,9,).(i=
measurable functions L, f, : (a,b) > R,.

1,2) and for all
(i=1,2).

The upcoming theorem is the generalization of Theorem
3.4,
Theorem 3.10 Let the assumptions of the Corollary 3.3 be

satisfied. Let U be a weight function on (a,b) and g, bea
(a,b)x(a,b). Let
that the

positive measurable function on

O0<p=<£g<w and function

Xr—)U(X)[gf(X't)jp is integrable on (@,b) for each
g, (%)

fixed t € (a,b), and that V is defined on (a,b) by

v(t) = ju(x)(g (( ;)]

If @ is a non-negative convex function on the interval
I — R, then the inequality

Tu(x){@(ﬁj.gn(x,tﬂmf(t)dtﬂ dx

< 00.

< [ iv(t)CD(LMf (t))dth :

holds for all measurable functions L., f :(a,b) > P,
suchthat ImL, ., f < I, where §, is defined by (3.2).
Remark 3.11 d(x)=x", v=>1

Choose and

u(x) = (g,(x))* in
v(t) = (

Ja,00" p(jg (% t)me(t)dtJ dx

Theorem 310 we  get

L

(9,06 1))o dXJq

=: K, (t) and we obtain

- —

< L TK6(t)Ln+l f V(t)dtjp

Inequality (3.6) gives

(3.6)

P

g, (0" [ | fo)deq

b
<K, (@) [L,.. F (@)t
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Here a new class of sufficient conditions on weight
functions U and W, and on g, for a modular inequality
involving is given.

Theorem 3.12 Let 0< p<(g<oo. Let U be a weight

function on (a,b), W be a positive function on (a,b), g,
be a positive measurable function on (a,b)x(a,b), and
g, be defined on (a,b) by (3.2). Suppose that
g,(xX)>0 for all xe(a,b) and that the function

{38

fixed t € (a,b). Let @ be a non-negative convex function

is integrable on (a,b) for each

onaninterval | c R.If

= supw p(t) Iu(x)(g (X, t))

te(ab) G, (X)

then there exists a positive real constant C, such that the
inequality

@u(x)@g [ﬁjg (L, f (t)dt]dqu

n

<C Uw(t)op(Lm1 i (t))dtj i

holds for all measurable functions L, f :(a,b) = R with

(3.7)

values in |. Moreover, if C is the smallest constant for
(3.7) tohold, then C < A.

We continue by providing a new two-parametric class of
sufficient conditions for a weighted modular inequality
involving Widder’s derivative.

Theorem 3.13 Let 1< p<(q<oo. Let U be a weight
function on (@,b), V be a measurable positive function on
(ab). g,
(a,b)x(a,b),and §, be defined on (a,b) by (3.2). Let
g,(x)>0 for all
q
X, t
XHU(X)[MJ be integrable on (a,b) for each
G, (%)
fixed t € (a,b) . Suppose that @ : | —[0,0) is a bijective
convex function on an interval | < R . If there exist a real

parameter S e (1, p) and a positive measurable function
V :(a,b) > R such that

be a positive measurable function on

Xe(a,b) and let the function
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A(s,V)=F(V,v) supv%(t)
te(a,b)
[J'u(x)[ (?;)J ]<oo,

where

b —p'(s-1)

F(\/,v):UV P (t)vl‘p’(t)dt]p',

then there is a positive real constant C such that the
inequality

@“(X)@q( X )jg (%, t)LMf(t)dt]dx]

<C Gv(t)cpp(LMf (t))dth (3.8)

holds for all measurable functions L., f :(a,b) > R with

values in | . Moreover, if C is the best possible constant in
(3.8), then
C< inf A@SV).
1<s<p
V>0

By modifying Theorem 3.13, we obtain the following result.
Theorem 3.14 Let 1< p<Qg<oo, 1<s<p, and

0<b<oo.Let U be aweight function on (0,b), W be a
positive measurable function on (0,b), and g, be a positive
measurable function on (0,b) x (0,b). Let | be an interval
in R and ®: 1 —[0,0) be a bijective convex function. If

V(t) = 'f;mﬂ’p'(x)xp"ldx <o
holds almost everywhere in (0,b) and
g.(xt) a4 q(p-s) a
A(s) = v r —
(s) Sﬂﬂ[fu(x)( ;00 j (x) J

s-1
XV P (t) < oo,
then there exists a positive real constant C such that

(Iu(x)cpq[ B )Ig (X, t)Ln+1f(t)dt] }

< c( [weoer(f (x))‘]'—):‘Jp (3.9)
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holds for all measurable functions L, f : (0,b) = R with

values in |. Moreover, if C is the best possible constant in
(3.9), then

C<inf (p—_1] " AG).

1<s<p\ P—S
The rest of this section is dedicated to new refined
inequalities. A new general refined weighted Hardy-type

inequality with @, related to an arbitrary non-negative
convex function is given in the following theorem.
Theorem 3.15 Let 7€ R,, U be a weight function on

(ab), g, a
(a,b)x(a,b), and §, be defined on (a,b) by (3.2).
Suppose that §,,(x) >0 forall x e (a,b), that the function

positive measurable function on

Xl—)U(X)(gf(X’t)J is integrable on (a,b) for each
G, (%)

fixed t € (a,b), and that V is defined on (@,b) by

RCONIE
v(t) = (J.u(x)[ 5.0 j XJ .

If @ is a non-negative convex function on an interval
IcR and ¢@:1 >R is any function, such that

@(X) € 0D(x) forall X e Intl, then the inequality
[Tv(t)cb(LMf (t))dt}
ju(x)cpf (— [o. 0L, f (t)dt]dx
g(x

Z : ( x )Ig (X D)L, f (t)dt}

xjH (x,t)r(x,t)dtdx

holds for all 7=>1 and all measurable functions
L..f:(ab)—>R with values in I,

r:(a,b)x(a,b) > R is defined by

and the function

g 1(X) Jo. (6L, )dtj

n a

O(L,, f (1)~ (

- ﬁjgn (X, t) Ln+1 f (t)dt

(3.10)

[ L jgnxt)Ln f(1) dt]

(03

n+1 (t)
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If 7€ (0,1] and the function @ : 1 — P is positive and

concave, then the order of terms on the left-hand side of
(3.10) is reversed, that is, the inequality

iu(x)qy (ﬁ :[gn (x, )L, f (t)dt)dx

n

—(f«0®aﬁﬂf0»m]

(U0 g L f tdt}
27{@&@ [g()jg(x) @
legn(x,t)r(x,t)dtdx

a
holds.
Let the function 1, :(a,b)x(a,b) — P is defined by

ACOELI(IY)
1 X

-0 —— AL, f(t)dt
[gxnlg‘x) ():
q)( gn]&X) }[gn (X!t) Ln+1f (t)dtJ

1 X
x L, f(t)-—— DL, f()dt |.
fnﬂ() GJ@{QKX) () ]

If @ is non-negative monotone convex on the interval
IcR, and ¢@:1 >R is any function, such that

@(X) e 0D(x) for all xelntl, then the inequality

(3.12)

Uv(t)qn(l_mf (t))dt]

b ] 1 X
_iu(X)CD (m‘!‘gn(x,t) L..f (t)dtjdx

n

_ign(x )L, f(t )dthn(X,t)q(x,t)dtdx

(3.13)
holds for all measurable functions L., f:(a,b) >R,
suchthat L, f(t) I, forall fixed t € (a,b).

If @ is non-negative monotone concave, then the order of
terms on the left-hand side of (3.13) is reversed.

n+1
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We give the standard one-dimensional setting, that is, by
considering intervals in R and the Lebesgue measure, and
obtain generalized refined Hardy and Pdlya—Knopp-type
inequalities involving Widder’s derivative.

Theorem 3.16 Let O<b<w and
g,:(0,b)x(0,b) >R, u:(0,b) >R be non-negative
measurable functions and

e (g0} |
w(t) = t Lu(x)( gn(x)] .

O<p=<g<wor—-w<qg=<p<0, ® isanon-negative
convex function on an interval | c R, and @:1 >R is

such that ¢(X) € oD(x) for all XelIntl, then the
inequality

<, t e (0,b). If

a

b dt \°
[3w0®amﬂfa»qq

¢ of 1 7 dx
fucoe (W Jo,00)L,., 1 (t)dt)?

%i; M(~()h(xnuﬂunmj

><J.gn (x,t)r(x,t)dt—X
) X

holds for all measurable functions L, f :(0,b) > R with
values in | and I is defined by (3.11). If @ is non-
negative monotone convex on the interval | — R and

@1 >R is that @(Xx) € 0D(x) for all x e Intl, then
the following inequality

(3.14)

gn X t)Ln+1f( )dt] dX

o'—,o‘ o
C
—~ /—\
@l
:
n,c_,x

b q. X
jiﬁgmp(—i—puxnuJamq (.13
0 a

xjsgn[me -ngnxtLMf dt]g( )q(x,t)dtd—xx(s.w)
0

holds for all measurable functions L., f:(0,b) >R,
such that L, f(t) €I, for all fixed t € (0,b) where 1, is
defined (3.12).
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If 0<g<p<owor —o<p<q<0,and ® is anon-
negative (monotone) concave function, then (3.14) and

(3.15) hold with the reversed order of integrals on its left-

hand side.
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