
Sci.Int(Lahore),,26(2),755-758,2014 ISSN 1013-5316; CODEN: SINTE 8

755

CONCEPT OF PSEUDO-RING SELF-TEST OF THE RAM
Omar Saeed Al-Mushayt

MIS Department, Business College,
King Khalid University, Abha, KSA.

omushayt@kku.edu.sa
ABSTRACT: This paper presents the concept of pseudo-ring self-test (π-test) of the random access
memory (RAM), The distinctive particularity of π-testing is that RAM truly is self-tested.. The process of
emulation can be controlled and analytically described. This allows adapting optimally the π-test
parameters in order to obtain the maximal value of fault coverage. The elaborated methodical and
software tools help to reach this aim.

Keywords: Embedded system, RAM, Pseudo-Ring Self-Test

1. INTRODUCTION
RAM truly came about in 1966 when Robert Dennard from
IBM's research center came up with the basic idea for
Dynamic Random Access Memory (commonly referred to
as DRAM or mostly RAM). Dennard had gone home for
the day, and shortly later was somehow inspired by the
basic idea for making DRAM. This turned out to be the
most important advances in computer technology. This was
just the beginning. It wasn't until the 1970s, that Intel
released the first RAM chip called the 1103 [1].
Random access memory (RAM) is the best known form
of computer memory. RAM is considered "random access"
because you can access any memory cell directly if you
know the row and column that intersect at that cell.
The opposite of RAM is serial access memory (SAM).
SAM stores data as a series of memory cells that can only
be accessed sequentially (like a cassette tape). If the data is
not in the current location, each memory cell is checked
until the needed data is found. SAM works very well for
memory buffers, where the data is normally stored in the
order in which it will be used (a good example is the texture
buffer memory on a video card). RAM data, on the other
hand, can be accessed in any order.
Similar to a microprocessor, a memory chip is an integrated
circuit(IC) made of millions of transistors and capacitors. In
the most common form of computer memory, dynamic
random access memory (DRAM), a transistor and a
capacitor are paired to create a memory cell, which
represents a single bit of data. The capacitor holds the bit of
information -- a 0 or a 1 (see How Bits and Bytes Work for
information on bits). The transistor acts as a switch that lets
the control circuitry on the memory chip read the capacitor
or change its state.

It is easy to see that the samples (1) are pseudorandom
sequences, generated by trivial Linear Feedback Shift
Register (LFSR) described by the polynomial p(x) =
1+x+x2.
Example 1. In figure 1 is presented the process of
generation of the first sequence, a, in (1).
But the pioneer and fundamental works in the random
testing RAM should be considered to be the papers Scheme
of random testing RAM contains the reference memory, the
memory under test, and the comparator (Figure 1).
Considering scheme, shown in the figure 2, RAM test
quality, i.e. fault coverage, is estimated by the length of
random testing. As it is remarked in [4] the test length is a
function of the fault, number of cells, the detection
uncertainty, the initial state, an the pattern probabilities. All
calculus are applicable for the truly random test, but not for
pseudorandom testing, where tests are generated repeatable,
starting by an initial seed.
In the same time, the test results from pseudorandom tests
are not well suited for Built-In Self-Test (BIST) [5]. For

implementation of the BIST RAM in [6, 7] preference is
given to the deterministic test technique, based on the
March algorithm. A typical RAM BIST architecture is
shown in figure 2. Controller and pattern generator can be
configured to execute the deterministic or the
pseudorandom testing [8].
March algorithm is designed to cover a predefined set of
faults. But a new RAM fault needs a novel test algorithm
and, so, BIST module must be configured or/and
reprogrammed for it.
Another test approach, been really a self-test scheme, was
proposed recently [9, 10]. This test technique, called
pseudo-ring (or π-) testing, is based on emulation of the

Initialization
before
testing

Random
Pattern
Source

Reference
RAM

RAM
under test

Comparator

Reset

Figure 1. Scheme of the RAM random testing

Figure 2. Typical RAM BIST architecture

Normal access

Pass

Fail

RAM

BIST module

Controller

Pattern
Generator

Comparator T
es

t c
ol

la
r

(M
U

X
) Controls

Address

Data In

Data Out

 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int(Lahore),,26(2),755-758,2014

756

1 1

linear automaton, in particular, LFSR, by memory itself. In
this case, no pattern generator is needed. The test quality is
estimated at the end of π-test iteration. There is more
degree of freedom to control the test procedure than in the
deterministic or in the random testing. And such control is
not so expensive.
The paper is organized as follows: section 2 introduces in
the π-testing RAM; section 3 describes the hardware and
software tools; section 4 considers some concluding
remarks.
2. Π-TESTING CONCEPT
Notion of pseudo-ring comes from the ring-like testing of
digital circuits [11]. In the ring-like testing circuit is
reconfigured so that it is transformed to a linear (or
nonlinear) automaton, i.e. LFSR. Test procedure is quite
simple: automaton is clocked during a period of time T,
equal to:

T= 2m– 1, (2)

wherem is the number of register stages.
After this period the final state Fin of register is compared
with expected one. In particular, the expected state is equal
to initial Init state. Then the comparison is made as:

Init≷Fin. (3)

The level of confidence of the test quality is estimated by
the detection uncertainty.

0:

LFSR

1: 0 1 1
2: 1 0 1 1
3: 1 1 0 1 1
4: 0 1 1 0 1 1
5: 1 0 1 1 0 1 1
6: 1 1 0 1 1 0 1 1
7: 0 1 1 0 1 1 0 1 1
8: 1 0 1 1 0 1 1 0 1 1

Figure 3. State-diagrams of pattern generator

Memory, at the top-level of abstraction, can be interpreted
as a long register with random access to its stages. Of
course, there is no reason to reconfigure so long “register”
to the structure of a linear automaton. We go in another
way.
The idea of pseudo-ring RAM testing is to use a set of
memory’s cells as the register stages. Second, after each
clock of time are shifted not the data in the register (see
figure 1), but the virtual register itself. The only what is
needed, is to help supplementary to push from outside this
virtual automaton in the memory address space. Complete
transition of the virtual LFSR across all addresses of the
memory is called the π-test iteration, or simple, π-iteration.
Π-test iteration consists of: initialization of virtual
automaton, pushing this automaton in the space of memory
array, unloading the automaton final state, and analysis of
the results.

Go/no go π-iteration is evaluated as in the ring-like testing:
comparing at the end of π-iteration the final and expected
states of the virtual automaton, i.e. register.
Consider the Example 2. Let the LFSR and its initial state is
the same as it is shown in figure 1. Conventionally suppose

that the memory size array is equal to 4; the cell size is
equal to 1. Let the addressing mode is counted up. Π-test
iteration starts with loading the virtual register by an initial
seed. Let the first two memory cells (with address 0 and 1)
play the role of the stages of virtual register. Load these
stages by the initial seed <1; 1> (Figure 4, a).
In accordance with structure of polynomial p(x) are
performed (on corresponding cells) the read and modulo
operations. Continue this operations until the final state will
be reached. If don’t take into account the peculiarity of
performing the read-write operations, then it can be
accepted thatN+m conditional clocks of time were carried
out to move the virtual automaton in the memory cells
address space. Since N≫m, then the complexity of π-
iteration is of order:

O(π-iteration) = N. (4)

In the above example was presented the main idea of the
“mechanism” (algorithm) of the π-iteration, which is a
constitutive part of the π-testing RAM. Generally, π-test
procedure consists in the execution of the controlled π-test
iterations finalized by analyzing of the results, i.e. the
automaton states. In fact, there are three controlling
parameters (degree of freedom):

• automaton structure, defined by polynomial p(x);
• initial seed in the π-iteration;
• Addressing mode or trajectory of automaton.

Tell some words about each of these parameters. As a rule,
linear automaton follows the structure of an irreducible
polynomial p(x) of degree m= deg p(x). Since π-iteration
must be performed at least T clocks of time, then:

m≤ log2N, (5)

whereN is the memory array size.
In dependence of the seed value at the beginning of each π-
iteration, can be distinguished two types of the π-test
scheme: via-register and self-memory. In the self-type

Figure 4. Π-test iteration diagram

Init {

a) load

1 1 1 1 0 1 1 0 1 1 1 0 1

1 1

RAM:

Fin { 0 1

b) first step c) continue d) unload

Figure 5. Scheme of π-testing RAM

Switch

1
0

C
CT

±

CS

A RAM

D

XOR
MUX

Clock

Up/Dn

C SA
D
C FF

D
C FF

D

Sci.Int(Lahore),,26(2),755-758,2014 ISSN 1013-5316; CODEN: SINTE 8

757

scheme the final state of the previous π-iteration is the
initial state of the next π-iteration. In this case, π-test
procedure is executed non-stop. In the via-scheme hardware
and time overhead are needed to reload the virtual
automaton in the each π-iteration.
There are three basic addressing modes for π-test
executions: count up, count down, and random. Need to
outline that in some works (for example, [12,13]) is
remarked, that use of different initial conditions such as
address order or background changing can increase the test
quality of the March algorithm.
Another remarkable property of the π-testing, that must be
denoted, is the invariability of the testing scheme. It means
that the same π-test scheme can be applied (without
essential modifications) as for bit-oriented so for the word-
oriented memories, and as for single-port so for multi-port
memories. In this context it should be use a specific method
of calculation of such parameter as the test length. Since in
dependence of the memory type, the π-testing scheme can
has different variants of its implementation, then it is
reasonable to evaluate the π-test length by number of states
that the virtual automaton has gone in the predefined period
of π-test time. Let k be the number of π-iteration.
Considering estimation (4), the π-test length L is of order:

L= O(kN). (6)
Finally, in spite of the word “random” in the notion
“pseudo-random”, the behavior of the (virtual) automaton is
just very deterministic and predictable. Π-test approach has
a fundamental mathematical support, namely, the theory of
linear automaton.

3. HARDWARE AND SOFTWARE TOOLS
Memory, manufactured as a circuit unit or as an embedded
block, is almost ready automaton, i.e. contains almost all
components necessary to implement the π-test procedure.
Test-engineer should only to select the single scheme of π-
testing from the proposed one, then to specify the control
parameters, to simulate the RAM under test for the selected
faults, and to analyze the obtained results.
3.1. Hardware tools
In accordance with the π-test technique hardware overhead
must carry out the modular operation and to push virtual
automaton in the address space of memory array. Consider
further an example, which is the instructive and illustrative
from the practical point of view.
Example 3. Let as it was in examples 1 and 2, p(x)=1+x+x2,
m=2. Memory array size is multiple with m. Other control
parameters are: trajectory – counting up and self-testing;
initial seed – a degeneration (zero) state. Memory is a
standard static RAM circuit. Then, it is enough to use an
Up/Down counter to generate the address of the selected
cells. Two flip-flops FF and a XOR gate will be used to
save the read data and to calculate the sum modulo 2 of
these data.

In accordance with random (see figure 2) and deterministic
testing, RAM must be initialized before. In the π-testing
scheme the signature analyzer is used as for initialization of

RAM, so for “processing” the output data. The resulted
scheme, for analyzed example, is shown in figure 5 (make
comparison with figures 2 and 3).
Π-test starts with initialization of RAM by patterns
generated by signature analyzer SA (output of multiplexor
MUX is switch on input 0). In this iteration of initialization
counter CT will up from low to high address value. Further,
are executed non-stop three π-iterations, where counter
follows the states: 0(rd)→1(rd)→1(wr);
1(rd)→2(rd)→3(wr) etc., rd and wr are read and write
operations. In each such iteration different backgrounds will
be generated. From figure 4 is resulted that backgrounds
are: 1101, 1011, and 0110. On the end of iteration
corresponding virtual automaton final state is expected. The
expected final states and the signature analyzer states are
values for π-test quality estimation.
3.2. Software tools
Test-engineer can elaborate and debug a π-test procedure
by Development and Simulation Tools Environment
(DSTE).

4. CONCLUSIONS
In this paper the concept, hardware and software tools of
the RAM pseudo-ring (π-) self-test are presented. Test
engineer has 3 degree of freedom to control the π-test
procedure. Elaborated software tools allow to debug π-test
algorithms, simulate faulty memory and evaluate the π-test
quality.
Results of the trivial π-testing fault coverage are presented.
13 single and 15 two-cell functional faults of static RAM
were simulated in this trivial test experiment. Length of π-
test is equal to 4N, where N is the size of memory array,
and for its implementation is needed an up-down counter,
two flip-flops and a XOR gate. Other practical π-test
schemes are not more complex than the trivial one.

6. REFERENCES
[1] S. P. Tyul`kin, “Programatestirovaniya OZU”,

Mikroprocessorny`esredstvaisistemy`, 1987, no.1.

[2] P. Fosse and R. David, “Random testing of memories”, Proc.
7th Conf. Gesellschaft fur Informatik (GF’77), Nuremberg,
Germany, Sept 1977.

[3] W. H. McAnney, P.H.Bardell, and V.P.Gupta,”Random
testing for stuck-at-storage cells in an embedded logic”,
Proc. Int. Test Conf., Philadelphia, PA, Oct 1984.

[4] A.Fuentes, R.David, and B.Courtois, “Random Testing
versus Deterministic Testing of RAM’s”, IEEE Trans.
OnComputers, Vol. 38, No. 5, May 1989, pp. 637-650.

[5] A. van de Goor, Testing Semiconductor Memories, ComTex
Publishing, Gouda, The Netherlands, 1998.

[6] D. S. Suk, and S.M.Reddy, “A March Test for Functional
Faults in Semiconductor Ranom Access memories”, IEEE
Trans. OnComputers, Vol. 30, May 1981.

[7] M. Marinescu, “Simple and Efficient Algorithms for
functional RAM testing”, Proc. Int. Test Conf., 1982.

 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int(Lahore),,26(2),755-758,2014

758

[8] C.-T. Huang, J.-R. Huang, C.-F. Wu, and T.-Y. Chang. “A
Programmable BIST core for embedded DRAM”,
IEEEDesign&Test of Computers, vol. 16, No.1, 1999, pp.
59-70.

[9] G. Bodean, “PRT: Pseudo-Ring Testing – A Method for Self-
Testing RAM”, IEEE-TTTC Int. Conf. On Automation,
Quality and Testing, Robotics: AQTR 2002 (THETA 13),
Tome 1, Cluj-Napoca, Romania, May 2002, pp. 295-300.

[10] G. Bodean, D.Bodean, A.Labunetz, “New Schemes for Self-
Testing RAM”, Design, Automation and Test in Europe (
DATE 2005), Munich, Germany, March 2005.

[11] I.P. Litikov "Ring-like testing of Digital circuits"
Measurement, vol.4, No.1, 1986, pp.2-6.

[12] D. Niggemeyer, J. Otterstedt, and M. Redeker, “Detection of
Non-classical Memory Faults using Degrees of Freedom in
March testing”, 11th Workshop Test methods and Reliability
of Circuits and Systems, Potsdam, February 1999.

[13] B. Sokol, and V. N. Yarmolik, “Memory Faults Detection
Techniques With Use of Degrees of Freedom in March
Tests”, Proc. IEEE East-West Design & Test Workshop
(EWDTW’05),Odessa, Ukraine, Sept 2005.

