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ABSTRACT: This paper investigates a robust adaptive feedback control scheme to solve a fault-tolerant control (FTC) 

problem for a three phase induction motor (TPIM) with actuator faults and external disturbances. A constructive algorithm 

based on linear matrix inequality (LMI) is developed for online tuning the output-feedback gains. The stability of closed-loop 

system is guaranteed by compensating the actuator faults with disturbance attenuation. The merits of proposed controller have 

been verified by the simulation on a Three Phase Induction motor.   
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1- INTRODUCTION 

With technology advances and modern control systems 

complexity increasing, rotating electrical machines play 

important roles in many fields especially in industrial 

processes because of their rigid, rugged, low price, reliable 

relative simplicity and easy to maintenance behaviors [1-2]. 

However, the reliable electric drives are essential in all safety 

critical applications such as: aerospace, transportation, 

medical and military applications. In these applications, the 

reliability of electric drive systems must be ensured, and any 

failure in motor drives may result in loss of property and 

human life. Therefore, it is absolutely necessary for the motor 

drives (utilized in safety critical applications) in order to have 

a fault tolerant capability and ability to produce a satisfactory 

output torque even in the presence of faults [3-5]. That's why 

that designing reliable drives has received great attention in 

recent years. 

When a fault occurs in system components including sensors, 

actuators, and plant, it can cause performance reduction and 

the closed-loop system instability. Therefore, there is a 

crucial need to design a class of controllers to compensate the 

faults effects and guarantee system stability with acceptable 

performance. FTC design approaches develop controllers in 

order to guarantee system stability in the presence of faults 

and disturbances. They are classified in two main classes: 

Passive FTC and Active FTC [6-9]. In the passive FTC 

approach, robust control techniques are utilized to design a 

fixed controller for maintaining the acceptable system 

stability and performances throughout normal or faulty cases 

[10]. The passive FTC approach considers fault as a special 

kind of uncertainties, and consequently controllers are fixed 

and designed to be robust against a class of presumed faults. 

Then designing proper controllers becomes more 

conservative, and attainable control performance may not be 

satisfactory. On the other hand, the FTC based on active 

technique can compensate faults either by selecting a pre-

computed control law or by synthesizing a new online control 

strategy [3,10-12]. Since the active FTC approach provides 

flexibility to choose various controllers, then different 

suitable controllers can be selected to reach a better 

performance. The active FTC design approach is based on 

 fault detection and isolation (FDI). The controller 

reconfiguration is a special case of active FTC systems based 

on the fault diagnostic information, which is provided by an 

FDI mechanism [9,1315]. Fig. 1 shows a closed-loop system 

with an active FTC strategy including the FDI block. 

Another typical approach for fault compensation is based on 

adaptive tuning. The developments of adaptive fault-tolerant 

compensation controller have been reported based on model 

reference adaptive control, where the outputs of the closed-

loop system could track the commanded reference outputs 

[16-20]. This approach does not need FDI block. Fig. 2 

shows a closed-loop system with an adaptation mechanism 

for on-line tuning of controller parameters.  

In the most of mentioned works such as [21-22], unmatched 

external disturbance term has not been considered in the 

control process, or it is hard to guarantee the asymptotical 

stability in the presence of disturbance term. However, the 

unmatched external disturbance plays an important role and it 

is able to decline closed-loop system performance. Therefore, 

studying the FTC design in the presence of unmatched 

external disturbance seems necessary and challenging. 

In this paper, a novel adaptive output feedback strategy is 

developed to solve the problem of FTC with more general 

loss of actuators effectiveness than the published works for 

TPIM. This technique is progressed by applying the LMI 

technique. Also, the close-loop system asymptotic stability is 

proved under mentioned faults and unmatched external 

disturbances. In comparison with the previous works like 

[1,16], the controller design algorithm is simplified and the 

number of online parameter tuning assumptions is reduced. 

Moreover, another goal is to design a fixed output feedback 

controller which do not requires flux measurements.  

This paper is organized as follows: In Section 2, the induction 

motor mathematical model is presented. The FTC Problem 

formulation is described in Section 3. In Section 4, a direct 

adaptive robust output feedback controller is developed and a 

constructive algorithm based on LMI is presented for 

controller design. In Section 5, the merits of the proposed 

FTC are verified by the simulations on TPIM subjected to the 

actuator faults and disturbances. Finally, conclusions are 

given in Section 6.  
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Figure 1. The closed-loop system with FTC and FDI 

 

 
Figure 2. The closed-loop system with adaptive FTC 

2- DYNAMIC MODEL OF AN INDUCTION MOTOR  

In this section, the dynamic model of TPIM is presented in a 

synchronously reference frame by the following Equations 

[23]:  
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where qsds ii ,  are the components of the stator current , qrdr ii ,  

are the components of the rotor current, r  is the rotor speed 

vector, qsds VV ,  are stator voltage, s  is synchronous speed,  

LT  is an unknown load torque,   pn  is the number of pair 

poles, J is the moment of inertia coefficient,  ,,r  

and are constants which are defined as:  
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Where sR  and rR are stator and rotor resistances, sL  and 

rL are stator and rotor inductances and mL  is the mutual 

inductance. 

To express the model of the induction motor with the 

measurable parameters (currents and rotor speed) as decision 

variables, the equations (1) can be given by the following 

state-space form: 
       

)()(

1

tCxty
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                                         (2) 

Where

   Trqrdrqsds

T
iiiixxxxxtx  54321)(  

Is the state vector of the induction motor, T
qsds VVtu ),()(   is 

a control vector, LTtw )(  represents the unknown 

disturbance function, ),,()( rqsds iity   is the vector of 

measurable variables, 1,, BBA  and C are known real constant 

matrixes with appropriate dimensions. 

I. PRELIMINARIES AND PROBLEM FORMULATION  

In this section, some useful notations and lemma are 

expressed. The notations in this paper are fairly standard.  

In this context: R  stands for the set of real numbers. For a 

given matrix A , TA  denote its transpose. I Denotes a unity 

matrix with appropriate dimension. For given 

matrices nkMk ,...,1,  , the notation   k
n
k Mdiag 1  denotes 

the block-diagonal matrix with kM  along the diagonal and 

denoted for brevity. Moreover, the following Lemma is used 

in this paper. 

Lemma1 [24]: (Rayleigh Inequality) Consider a nonsingular 

symmetric matrix nnRQ   and the minimum and maximum 

eigenvalues of Q  as min  and max , respectively. Using 

these notations, for any nRx , one can define: 
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Now, consider the following continuous-time linear system 
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Where   nRtx   is the state vector, mF Ru   is the faulty 

control input vector,   qRtw   is a continuous vector 

function which represents the bounded external disturbances 

and 
pRty )(  is the measured output vector. 

Assume  tu F
i  is the output signal of i the actuator that is 

faulty and  tui  is the input signal of i the actuator. Then, we 

denote a general actuator fault model as 

    mitutu ii
F
i ,....2,1,                     (4)  

where i  is the unknown time-varying actuator efficiency 

factor, i and i  are the known lower and upper bounds of 

i , respectively. Table 1, illustrates the actuator fault modes. 

 

Table I. Fault Modes 
Fault mode 

i  
i  

Normal 1  1  
Loss of effectiveness 

 
0  1  
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From (4), one can obtain 

   tutuF                                                                   (5) 

Where   midiag ii ,....2,1,   Then, the set of operators 

with the above structure can be denoted by 

  ]},[,:{ iiiiidiag                         (6) 

Hence, the dynamic of system (3) with actuator faults (5) can 

be described as follows: 

       
)()(

1

tCxty

twBtuBtAxtx



 
                                         (7) 

To ensure the achievement of fault-tolerant objectives, the 

following assumptions in the FTC design are also assumed to 

be valid. 

Assumption1. All pairs  BA, are uniformly completely 

controllable for any actuator fault mode under consideration. 

Assumption2. The unmatched external disturbance w  is a 

piecewise continuous bounded function, that is, there exist 

known positive constant w  such that 

,ww                                                                          (8) 

Assumption3. The stator current and rotor speed are 

measurable.                          

Remark1. Assumption 1 is standard and denotes the internal 

stability of each normal and fault isolated system to satisfying 

this assumption. Assumption 2 is quite natural and is 

common in the robust fault-tolerant control literature. 

 

3- DIRECT ROBUST ADAPTIVE OUTPUT FEEDBACK 

FTC 

In this section, we develop the adaptive laws to update the 

controller parameters when the loss of actuator effectiveness 

is unknown. Then, a method for designing direct adaptive 

fault-tolerant controllers to guarantee closed-loop system 

stability via adaptive output feedback is presented in 

Theorem1. Consider the following FTC Law for the system 

(7): 

     tktyktu 21                                                          (9) 

Where
nmRk 1 and   mRtk 2  are respectively the fixed 

and time varying matrix gains that will be design later. 

From (7) and (9), the closed-loop system can be presented by 

            twBtktBtxCktBAtx 121                   (10) 

The following adaptive law is suggested to design the 

adaptive FTC. 
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Where and   are suitable positive constants which satisfy 

the following equation  

,
2
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For   ,,....2,1, midiag ii    and Rtk )(ˆ
3  is 

updated by the following adaptive law: 
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Where  is any positive constant and )(ˆ
03 tk is finite. From 

(13) we can see 0)(ˆ
3 tk if 0)(ˆ

03 tk .In order to ensure the 

achievements of FTC objectives such as closed-loop stability 

and disturbance attenuation, the following theorem is 

considered. 

Theorem1. Under assumptions 1,2 and 3, the control law (9) 

for any positive matrix Q  guarantees the closed-loop system 

(10) asymptotic stable if there exists a positive        

symmetric matrix R  and constant matrix Z  for any 

  such that : 
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Furthermore with a feasible solution for LMI  ZR,  

))((),)(())(( 11
1
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Remark2. Parametric LMI in the Theorem 1 is dependent on 

 but for feasibly solving of it, there is no need to know 

about   for any given time of simulation, because we only 

solve the parametric LMI for lower and upper boundaries of 

the  matrix components. For example if the system has m 

actuators so LMI must be solved for m2 repetition and at last 

the answer of LMI for simulation will be the convex 

combination of the answers[9],[12]. 
Proof. For the adaptive closed-loop system described by (10), 

consider the following Lyapunov candidate: 
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According to the (7) Lyapunov functional will be as 
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Where )(
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3 tk  is the parametric error and its dynamics can be 

written as 
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Where 3k  is constant. 

According to (10) the time derivative of the Lyapanov 

function becomes 
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By multiplying PCBCx TT  to the numerator and 

denominator of (11) and substituting it in (18), the equation 

(18) can be rewritten as follows: 
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Considering (12) it will be easy to show that: 
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Since wPBCx TT
1  is scalar, and by applying assumption 2 

and Lemma 1, one can get:  

wPCBCxwPCBCxwPCBCx TTTTTT
111 222  (21) 

Then, inequality (22) can be derived from Equations   (20) 

and (21) as follows. 
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Where the constant 3k is assumed to satisfy the following 

inequality 
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Considering (22) and (23) and using of error dynamic of 

controller parameter, the adaptation law (13) can be derived 

as 

0
~~

22ˆ2 33
1

13   kkwPCBCxkPCBCx TTTT 
  

333
ˆ~
kkctek


  

31333
1 ˆˆ~

kPCBCxkPCBCxkk TTTT  
  

33

313
3

ˆ

)ˆ(ˆ

kk

kPCBCxkPCBCx

dt

kd
TTTT







 

Hence the derivative of Lyapanov function will be as 
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By defining the Positive matrix Q  in a way that: 
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we can get: 
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Taking into account   1
 PCCR T

 and CRkZ 1 , leads to 
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Then by using the Schur’s Lemma, the LMI form of (28) will 

be in the following form: 
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Finally from (24), we can get 
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0

~
, 3  Qxx
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Then, the global adaptive fault-tolerant compensation control 

problem with disturbance rejection is solvable. Moreover, the 

closed-loop system with FTC is asymptotically stable, and 

the system states  tx  will converge to zero. 

The following algorithm summarizes the suggested FTC 

implementation method: 

Step 1) Check Assumptions1 ~ 3 to be satisfied in all 

conditions. 

Step 2) Solve LMI and Compute the matrix P  and 1k using 

(29) with assuming 0QQT . 

Step 3) Compute the gains  tk2  using (11) and (13). 

Step 4) Compute robust adaptive control Law with (9). 

4- SIMULATION RESULTS 

Numerical simulations have been performed to validate the 

proposed FTC scheme. The induction motor parameters are 

given in the appendix. The system (1) is linearized about an 

operating point using MATLAB, and the equation (1) can be 

given by the state-space form (2), where 
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The following test consists 5Nm load torque which is applied 

to the motor at 0.2sec, also the actuator fault is occurred in 

the following modes:  

 

Mode 1) Actuators 1, 2 are in normal mode, i.e. 

44.0,4.00,11
2

1
1  tt  

Mode 2) Actuators 1, 2 are all in loss of effectiveness mode, 

i.e. 

42.04.0,8.0,8.0 2
2

2
1  t  

Mode 3) Actuators 1, 2 are all in loss of effectiveness mode, 

i.e. in this mode the effectiveness of the actuators were 

decreased more than mode 2. 
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The following constants and initial conditions are taken for 

simulation. 
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BySolving LMI (29) by LMI optimization algorithm, 1k  and P can 
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The computer simulation results are shown in Fig. 3. It shows 

that the system states  tx  are converged to zero in a short 

time for any initial conditions. 

Fig. 4 (a-e) is the response of the TPIM states with fixed 

output feedback FTC in the above mentioned faulty case.  

This figure responses are remarkable when the load torque is 

applied at t=0.2s andthe actuator faults is occurred at t=0.4s. 

In the other word, simulation results demonstrate that the 

proposed fault compensation scheme has a considerable 

influence on the performance of the induction motor. 

Moreover, the adaptive output feedback has a simple 

structure in comparison with the adaptive state feedback, and 

then it can be used in practical implementations extensively. 

Also, there is no need for flux measuring in the output 

feedback control scheme. 
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Figure 3.Responses of TPIM under the fixed output feedback 

FTC for normal mode. 
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Figure 4(a-e). Responses of TPIM under the fixed output 

feedback FTC (load torque is applied at t=0.2s andthe actuator 

faults is occurred at t=0.4s). 
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5- CONCLUSION 
In this paper, the robust Adaptive output feedback fault-

tolerant controllers were developed for TPIM with actuator 

faults and bounded disturbances. Using the Lyapunov 

stability theory, a constructive algorithm based on LMIs was 

developed for on-line tuning of adaptive FTC laws to 

stabilize the closed-loop system. Numerical simulations on 

Three Phase Induction Motor demonstrate the effectiveness 

of the proposed FTC method.  

 

6- APPENDIX  

The induction motor parameters are selected as: 3HP/2.4 KW 

),(460 RMSLLVU  , Hz60 , AIn 4 , RPMnr 1750 . The    

parameters 

are: 2.025.0 mKgJ  ,  77.1sR ,  34.1rR ,  25.5lsX , 

 57.4lrX , 139mX  and 2pn . 
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