SOLUTION OF QUARTER CAR MODEL BY PATTERN SEARCH METHODS

Nagina, F., M. Saeed, M. F. Tabassum*, J. Ali

Department of Mathematics, University of Management and Technology, Lahore, Pakistan.
* Corresponding Author: Muhammad Farhan Tabassum, farhanuet12@gmail.com +92-321-4280420

ABSTRACT: This paper involves a relative study of three optimization methods, which are Hooke-Jeeves, Nelder-Mead, and Multi-Directional Search Methods, for design optimizing vehicle suspensions constructed on quarter vehicle model with different types of constrains. In optimization, three design norms are suspension working space, dynamic tire load and vertical vehicle acceleration. To execute design optimization five variables are nominated which are the tire stiffness, damping coefficient, sprung mass, spring stiffness and un sprung mass. It was resulted from the comparative study that the Multidirectional Search Method is more reliable than Hooke-Jeeves Method and Nelder-Mead Method. The optimum results of the quarter car model were obtained by using MATLAB programming environment which demonstrated the effectiveness and applicability of the methods.

Key Words: Quarter Car Model, Hooke-Jeeves Method, Nelder-Mead Method, Multi-Directional Search Method

1. INTRODUCTION

Trial and error method depends on the design and practice of vehicle suspension until the require results achieved [1]. This process is slow and requires a long time. Because of the advancement in theoretical method and computational power, by using optimization approaches focus of vehicle suspension design has been diverted from refined numerical investigation to design synthesis. Many algorithms are used to find optimal suspension properties. Many methods are available, but the choice of a systematic method is an important problem. The above methods could be used in different applications such as control system, identification of system and function optimization, which apply in conventional methods by using different principles concurrently and analytically, whose important features expressed as a population wide search and a continuous balance into exploration and exploitation principal of building block combination [2]. To find a prime solution for searching problems we use Hooke-Jeeves method. Yet, HJ are distinguished by a large number of function evaluations. Function comparison techniques provide a base for Nelder-Mead method and Multidirectional Search method, these techniques are no need of derivative evaluation these are helpful in solving many problems where the objective function is not differentiable. Vehicle suspension of design optimization need the well trade off solution by knowing optimal design variables which has vertical vehicle body’s acceleration, suspension working space and dynamic tire load. Which can be found by variables including acceleration of vehicle, suspension working space and dynamic tire load. Such variables could be included damping coefficient, suspension spring stiffness, inertial parameters and geometry [3]. In the frequency domain the survey of ride quality, the dynamic tire load, suspension working space and acceleration of a vertical vehicle body are acquired [4]. The prime objective of design optimization is to minimize, the acceleration of a vertical vehicle body. At the same time constrained are dynamic tire load and suspension working space. Vehicle will damage in that case if the value of suspension working space is very low, in this way un-sprung mass collision with sprung mass and damage will occur. In case of consistent tire load is less than dynamic tire load, then vehicle tires will rebound the road, this provides the result of motion of vehicle in an unstable manner. A complex vibrating system is a vehicle suspension system which has multiple degree of freedom [5]. To isolate the vehicle body from the road input suspension system is being used. Dynamics related to the vehicle put different needs on the constituent of the suspension system. Ride comfort of passenger requires that sprung mass acceleration should be small while for dynamic presentation there should be proper road holding i-e consistent force into the tires and the road [6].

2. MATERIALS AND METHODS

The motivation for this research was to modify Quarter Car Model. The derivative free methods were used for the optimization of Quarter Car Model. These methods were basically designed for unconstrained optimization problems. In formulating optimization Quarter Car Model the constraints were handled by using exterior penalty functions [7-10].

2.1 Hooke-Jeeves Method

For an N-dimensional problem HJ method [11] required an initial point \(x_0\), a set of N linearly independent search directions \(v_i\), step-length parameters \(\delta_i > 0\) and a parameter \(\mu > 1\). The method used two types of moves given below:

Exploratory Move: This move was made on the current point by investigation along each direction according to the following formula:

\[x_{new} = x_0 + \delta_i v_i\] for all \(i = 1, 2, 3, \ldots, N\).

Pattern Move: When an exploratory move was completed and was accomplished successfully, then pattern move was executed, by jumping from present base point along with a direction connecting and a new point was found. Once a pattern move was established it was possible to move as

Fig-1: Successful exploratory move
much as allowed. An enlargement parameter \(\eta, \eta \geq 1 \), was used for this purpose. The pattern direction was found by the formula applied as \(d = z_E - z_b \). Therefore the new point, through pattern move, was found as given below:

\[
y_b = z_E + \eta d = z_E + \eta (z_E - z_b).
\]

2.2 Nelder-Mead Simplex Method

While considering the initial simplex with three initial points i.e. \(y^0 = \text{Best Point}, y^1 = \text{Good Point}, y^2 = \text{Worst Point} \). Take the centroid \(y^C \) of best and good points. Reflect the worst point through centroid, the \(y^R \) becomes the new point, which having equidistance from \(y^C \) to \(y^2 \). In this method there were several operations to be performed. Reflection occurred when \(y^i \geq y^R > y^0 \).

Mathematically, the reflected point \(y^R \) was given as [12]

\[
y^R = y^C + \delta(y^c - y^n)
\]

and expansion occurred when \(y^i \geq y^0 > y^R \).

Mathematically, the expanded point \(y^E \) was given as

\[
y^E = y^G + \delta(y^c - y^n)
\]

In contraction when the reflection point lies between the good and best vertex and it was generated two types. Outside contraction occurred when \(y^R \geq y^i > y^0 \).

Mathematically, the expanded point \(y^{OC} \) was given as

\[
y^{OC} = y^C + \delta^{OC}(y^c - y^n)
\]

Inside contraction occurred when \(y^R \geq y^i \). Mathematically, the expanded point \(y^{IC} \) was given as

\[
y^{IC} = y^C + \delta^{IC}(y^c - y^n)
\]

If no one from the above condition was satisfied, then shrink was produced.

2.3 Multi Directional Search Method

At any iteration in multi-directional search algorithm [13] we take \(n + 1 \) point. Which define in a non-degenerate simplex. The method generates \(n \) points along \(n \) linearly independent search directions. The method uses the following operations. Consider the initial simplex with three initial points.

\[
\begin{align*}
x^B &= \text{Best Point} \\
x^G &= \text{Good Point} \\
x^W &= \text{Worst Point}
\end{align*}
\]

when we take the best point then we reflect the good and worst point along this best point. After reflecting the original simplex through the best point we obtain a new simplex. The lengths of all the edges are same as those of original simplex.

Mathematically, the condition is satisfied

\[
\min\{f(x^i), i = 1, \ldots, n\} < f(x^k)
\]

If one of the reflected points is less than the best point then we expand the reflected simplex by doubling the length of the each edge along the reflected simplex.

Mathematically, the condition is satisfied

\[
\min\{f(x^i), i = 1, \ldots, n\} < \min\{f(x^i), i = 1, \ldots, n\}
\]

If the function value of the reflect point is greater than or equal to function value of best point then the inside contraction exists towards the best point by halving the length of each edge. Then the contracted simplex is obtained.

Mathematically, the condition is satisfied

\[
\min\{f(z^i), i = 1, \ldots, n\} < f(x^k)
\]
3. VEHICLE SYSTEM MODELING

Figure 8 shows a simplified 2 degrees of freedom quarter-vehicle model. It consists of a sprung mass \(m_2 \) supported by a primary suspension, which in turn is connected to the un-sprung mass \(m_1 \). The tire is represented as a simple spring, although a damper is often included to represent the small amount of damping inherent to the visco-elastic nature of the tire. The road irregularity is represented by \(q \), while \(m_1, m_2, K, K_0 \) and \(C \) are the un-sprung mass, sprung mass, suspension stiffness, suspension damping coefficient and tire stiffness, respectively [19].

- \(m_2 = \) Sprung mass
- \(m_1 = \) Un-sprung mass
- \(K = \) Linear spring of stiffness
- \(K_0 = \) Spring stiffness
- \(C = \) Damping coefficient
- \(q = \) Road irregularity
- \(z_i = \) Un-sprung mass displacement
- \(z_s = \) Sprung mass displacement

The governing equations of 2 DOF quarter vehicle model are:

\[
m_2 \ddot{z}_2 + C(z_2 - z_i) + K(z_2 - z_i) = 0
\]

\[
m_1 \ddot{z}_1 + C(z_1 - z_2) + K(z_1 - z_2) + K_i(z_i - q) = 0
\]

Performing a Fourier transform:

\[
z_i(m_1 \omega^2 \omega^2 + C \omega^2 + K) = z_i(\omega \omega \omega + K)
\]

\[
z_s(-\omega^2 m_2 + i \omega C + K + K_s) = z_s(i \omega C + K) + qK
\]

Ratio between the road excitation \(q \) and the un-sprung mass displacement \(z_i \) is given by:

\[
\frac{z_i}{q} = \frac{\left[1 - \frac{\omega^2}{\omega^2} + 4 \omega^2 \omega^2 \right]}{\Delta}
\]

where

\[
\Delta = \left[1 - \left(\frac{\omega}{\omega} \right)^2 + 4 \omega^2 \omega^2 \right] + 4 \omega^2 \omega^2
\]

The stiffness ratio is \(\gamma = \frac{k_t}{k} \)

Mass ratio is \(\mu = \frac{m_2}{m_1} \)

Damping ratio is \(\xi = \frac{c}{2 \sqrt{m_1 k}} \)

Angular frequency is \(\omega = \sqrt{\frac{k}{m_2}} \)

The ratio between the sprung mass displacement \(z_2 \) and road excitation \(q \) is:

\[
\frac{z_2}{q} = \frac{\gamma}{\Delta} \left[1 + 4 \xi^2 \eta^2 \right]^{1/2}
\]

So the amplitude ratio between the sprung mass acceleration, \(\ddot{z}_2 \) and the road excitation can be expressed as,

\[
\frac{|\ddot{z}_2|}{q} = \frac{\omega^2}{\Delta} \left[1 + 4 \xi^2 \eta^2 \right]^{1/2}
\]

The allowable maximum suspension displacement \(f_s \) is suspension working space. The suspension working space, in the response to road displacement input is given as:

\[
\frac{f_s}{q} = \frac{\gamma}{\Delta} \left[1 + 4 \xi^2 \eta^2 \right]^{1/2}
\]

The dynamic tire load is defined as:

\(F_d = k_t(Z_t - q) \)

And the static tire load is:

\(G = (m_t + m_s)g = m_t(\mu + 1)g \)

Where \(g \) is called gravitational acceleration. Thus the amplitude ratio, between the relative dynamic tire load and the road input \(q \) becomes:

\[
\frac{F_d}{Gq} = \frac{\gamma}{\frac{\omega^2}{\Delta} + 4 \omega^2 \omega^2}
\]

Unevenness of the road is main reason of disturbance, for either the rider or vehicle structure itself. Road profile
The root mean square (RMS) of the sprung mass acceleration can be expressed as
\[\sigma_z = \left\{ \pi RV \left[\frac{k_c}{2 m_c^2} \left(\frac{(m_i + m_j) k^2}{2 m_c^2} \right) \right] \right\}^{1/2} \]

The RMS of the suspension working space is as
\[\sigma_{f/d} = \left\{ \pi RV \left[\frac{(m_i + m_j) k^2}{2 m_c} \right] \right\}^{1/2} \]

The RMS of relative dynamic tire load can be calculated as
\[\sigma_{f_s/c} = \left\{ \pi RV \left[\frac{k_c}{2 m_c^2} \left(\frac{(m_i + m_j) k^2}{2 m_c^2} \right) \right] \right\}^{1/2} \]

Subject to \[\begin{align*}
\sigma_{f_s/c}(m_i, m_j, k, c) & \leq a \\
\sigma_{f/d}(m_i, m_j, k, c) & \leq b \\
83.2 & \leq m_i \leq 124.8 \\
559440 & \leq k \leq 839170 \\
80480 & \leq k \leq 120720 \\
2560 & \leq c \leq 3840
\end{align*} \]

4. RESULTS AND DISCUSSION

The above problem was solved by Zhongze Chiin [19] in 2008 using Genetic Algorithms, Pattern Search Algorithm and Sequential Quadratic Program. The results are available in the following table

| Table-2: Initial, optimal points, optimal values and constraints of GA, PSA and SQP |
|---|---|---|---|---|---|
| Initial Points | 1st | 2nd | 3rd | 4th | 5th |
| m_i (kg) | 10 | 80 | 70 | 80 | 100 |
| m_j (kg) | 10 | 800 | 900 | 100 | 2000 |
| K_i (N/m) | 10 | 500000 | 400000 | 900000 | 1300000 |
| K_j (N/m) | 10 | 700000 | 600000 | 700000 | 900000 |
| C (N/m/s) | 10 | 4000 | 4000 | 1000 | 5000 |
| Optimal Points | | | | | |
| m_i (kg) | 124.75 | 83.2 | 83.2 | 124.8 | 124.8 |
| m_j (kg) | 764.4 | 764.4 | 764.4 | 764.4 | 764.4 |
| K_i (N/m) | 559440 | 559440 | 559440 | 722900 | 701800 |
| K_j (N/m) | 80480 | 120720 | 80480 | 80480 | 8525.5 |
| C (N/m/s) | 2564.3 | 3840 | 3840 | 2560 | 2560 |
| Constraint-1 | 0.0381 | 0.0337 | 0.0304 | 0.0382 | 0.0218 |
| Constraint-2 | 2.7725 | 2.6899 | 2.3683 | 3.4936 | 3.4880 |

Sequential Quadratic Programming

\(\sigma_z \) (m/s²)	1.2913	1.5388	1.0703	1.3033	1.3725
\(\sigma_{f/d} \) (m)	0.038119	0.033658	0.030414	0.038152	0.038104
\(\sigma_{f/G} \)	0.36679	0.42545	0.42545	0.4472	0.43675

Pattern Search Algorithm

\(\sigma_z \) (m/s²)	1.2913	1.5388	1.0703	1.3033	1.3725
\(\sigma_{f/d} \) (m)	0.03562	0.03256	0.03214	0.03345	0.03284
\(\sigma_{f/G} \)	0.42536	0.42444	0.42345	0.42365	0.42563

Genetic

| \(\sigma_z \) (m/s²) | 1.0703 | 1.0703 | 1.0703 | 1.0703 | 1.0703 |
In the light of above findings it was observed that these optimal solutions are optimal by no means as the second constraint is violated by significant measures of violation. In Table 2, constraint 2 presents the mentioned degrees of violations.

Table-3: Feasibility and infeasibility of constraints by HJ, NM and MDS Methods [15, 16] with initial guess (10, 10, 10, 10, 10)

<table>
<thead>
<tr>
<th>Methods</th>
<th>Initial Guess</th>
<th>Constraint 1</th>
<th>Constraint 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HJ Method</td>
<td>Optimal Solution (75.333055, 773.63796, 559430.09268, 80485.49820, 38463.46060)</td>
<td>-0.0196775818349617</td>
<td>1.90260376812108</td>
</tr>
<tr>
<td>NM Method</td>
<td>Optimal Solution (83.200090, 764.4, 559440.019752, 3839.986248)</td>
<td>-0.0195863093648168</td>
<td>1.9211431144006</td>
</tr>
<tr>
<td>MDS Method</td>
<td>Optimal Solution (83.203090, 764.40, 559440.019752, 3839.986248)</td>
<td>-0.0195861468095005</td>
<td>1.92112263915182</td>
</tr>
</tbody>
</table>

Table-4: Feasibility and infeasibility of constraints by HJ, NM and MDS Methods with initial guess (80, 800, 500000, 700000, 400000)

<table>
<thead>
<tr>
<th>Methods</th>
<th>Initial Guess</th>
<th>Constraint 1</th>
<th>Constraint 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HJ Method</td>
<td>Optimal Solution (81.828276, 772.612951, 559433.636940, 80475.276058, 3832.910779)</td>
<td>-0.019517677216608</td>
<td>1.90413726728248</td>
</tr>
<tr>
<td>NM Method</td>
<td>Optimal Solution (83.000000, 764.4, 559440.925244, 80481.957320, 3840)</td>
<td>-0.0195897708269247</td>
<td>1.92107909503275</td>
</tr>
<tr>
<td>MDS Method</td>
<td>Optimal Solution (83.002000, 764.41245, 559440.952244, 80480.957320, 3840.2356)</td>
<td>-0.0195906626920102</td>
<td>1.92102483892246</td>
</tr>
</tbody>
</table>

Table-5: Feasibility and infeasibility of constraints by HJ, NM and MDS Methods with initial guess (70, 900, 400000, 600000, 4000)

<table>
<thead>
<tr>
<th>Methods</th>
<th>Initial Guess</th>
<th>Constraint 1</th>
<th>Constraint 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HJ Method</td>
<td>Optimal Solution (75.921371, 771.785844, 559441.594991, 80480.997204, 3832.899095)</td>
<td>-0.0196292865451949</td>
<td>1.90697315844403</td>
</tr>
<tr>
<td>NM Method</td>
<td>Optimal Solution (83.204148, 764.399949, 559446.821997, 80480.3839.942469)</td>
<td>-0.0195861144047343</td>
<td>1.92113525269799</td>
</tr>
<tr>
<td>MDS Method</td>
<td>Optimal Solution (83.101418, 764.399949, 559446.891997, 80480.3839.942469)</td>
<td>-0.0195879093214006</td>
<td>1.92110799926414</td>
</tr>
</tbody>
</table>

Table-6: Feasibility and infeasibility of constraints by HJ, NM and MDS Methods with initial guess (80, 100, 900000, 100000, 1000)

<table>
<thead>
<tr>
<th>Methods</th>
<th>Initial Guess</th>
<th>Constraint 1</th>
<th>Constraint 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HJ Method</td>
<td>Optimal Solution (75.839465, 773.241011, 559447.122690, 80480.504172, 3831.915590)</td>
<td>-0.0196122056292944</td>
<td>1.904151628874</td>
</tr>
<tr>
<td>NM Method</td>
<td>Optimal Solution (83.2, 764.399539, 559442.128269, 40480, 3839.999993)</td>
<td>-0.0243872400924713</td>
<td>1.67113469031086</td>
</tr>
<tr>
<td>MDS Method</td>
<td>Optimal Solution (83.24562, 764.399539, 559442.128269, 40480.245668, 3839.998883)</td>
<td>-0.0243865082661877</td>
<td>1.67133891587182</td>
</tr>
</tbody>
</table>

Table-7: Feasibility and infeasibility of constraints by HJ, NM and MDS Methods with initial guess (100, 2000, 1300000, 90000, 5000)

<table>
<thead>
<tr>
<th>Methods</th>
<th>Initial Guess</th>
<th>Constraint 1</th>
<th>Constraint 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HJ Method</td>
<td>Optimal Solution (76.579800, 767.382309, 559444.636447, 80482.954919, 3839.018947)</td>
<td>-0.0196770801214908</td>
<td>1.91540246025257</td>
</tr>
<tr>
<td>NM Method</td>
<td>Optimal Solution (83.2, 764.4, 559444.306223, 80480.159214, 3839.981499)</td>
<td>-0.0195862789970404</td>
<td>1.92112625389338</td>
</tr>
<tr>
<td>MDS Method</td>
<td>Optimal Solution (83.365480, 764.399999, 559444.362223, 80480.152914, 3839.918499)</td>
<td>-0.0195830613388729</td>
<td>1.92117631982157</td>
</tr>
</tbody>
</table>

In the light of above findings, we apparently are bound to believe that the given model is not appropriate or the solution provided in [17-19] are not correct so the further attempts are required to be made either for new optimal solutions or for re-formulating the above model. As far as the study is concerned, we emphasize that the considered pattern search methods can provide better solutions with smaller degrees of constraints violations on the engineering design problems like the one considered in this study provided appropriate initial guess is used.

Table-8: Optimal design variables based on the HJ Method for minimizing sprung mass vertical acceleration with vehicle speed of 40 m/s

<table>
<thead>
<tr>
<th>Initial Points</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1(kg)</td>
<td>10</td>
<td>80</td>
<td>70</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>m2(kg)</td>
<td>10</td>
<td>800</td>
<td>900</td>
<td>100</td>
<td>2000</td>
</tr>
<tr>
<td>Kc(N/m)</td>
<td>10</td>
<td>50000</td>
<td>400000</td>
<td>900000</td>
<td>1300000</td>
</tr>
<tr>
<td>Kn(N/m)</td>
<td>10</td>
<td>70000</td>
<td>60000</td>
<td>70000</td>
<td>90000</td>
</tr>
</tbody>
</table>
It is evident from Table 8 that the optimal value 1.058116756 found by HJ Method is the best out of all the results reported in this study. The second constraint is violated but by a smaller amount of violation. Hence we can conclude that the best solution found by HJ method is better in all respects.

5. CONCLUSION
The outcome performances of Hooke-Jeeves, Nelder-Mead and Multi-Directional Search methods experimented via a number of initial guesses were carried out on formulated Quarter Car Model. It was concluded that performance of HJ method was better with respect to its efficiency of solving such a problem with minimum computational efforts as compared to those of NM and MDS methods. Through this work it is recommended that in any environment HJ method is a better choice as compared to the class of methods involving NM and MDS method. Also the results for HJ method are better than the previous works mentioned above.

REFERENCES

