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ABSTRACT: This paper involves a relative study of three optimization methods, which are Hooke-Jeeves, Nelder-Mead, and 

Multi-Directional Search Methods, for design optimizing vehicle suspensions constructed on quarter vehicle model with 

different types of constrains. In optimization, three design norms are suspension working space, dynamic tire load and vertical 

vehicle acceleration. To execute design optimization five variables are nominated which are the tire stiffness, damping 

coefficient, sprung mass, spring stiffness and un sprung mass. It was resulted from the comparative study that the 

Multidirectional Search Method is more reliable than Hooke-Jeeves Method and Nelder-Mead Method. The optimum results of 

the quarter car model were obtained by using MATLAB programming environment which demonstrated the effectiveness and 

applicability of the methods. 
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1. INTRODUCTION 
Trial and error method depends on the design and practice of 

vehicle suspension until the require results achieved [1].This 

process is slow and requires a long time. Because of the 

advancement in theoretical method and computational power, 

by using optimization approaches focus of vehicle suspension 

design has been diverted from refined numerical investigation 

to design synthesis. Many algorithms are used to find optimal 

suspension properties. Many methods are available, but the 

choice of a systematic method is an important problem. The 

above methods could be used in different applications such as 

control system, identification of system and function 

optimization, which apply in conventional methods by using 

different principles concurrently and analytically, whose 

important features expressed as a population wide search and 

a continuous balance into exploration and exploitation 

principal of building block combination [2]. To find a prime 

solution for searching problems we use Hooks-Jeeves 

method. Yet, HJ are distinguished by a large number of 

function evaluations. Function comparison techniques 

provide a base for Nelder-Mead method and Multidirectional 

Search method, these techniques are no need of derivative 

evaluation these are helpful in solving many problems where 

the objective function is not differentiable.  

Vehicle suspension of design optimization need the well trade 

off solution by knowing optimal design variables which has 

vertical vehicle body’s acceleration, suspension working 

space and dynamic tire load. Which can be found by 

variables including acceleration of vehicle, suspension 

working space and dynamic tire load. Such variables could be 

included damping coefficient, suspension spring stiffness, 

inertial parameters and geometry [3]. In the frequency 

domain the survey of ride quality, the dynamic tire load, 

suspension working space and acceleration of a vertical 

vehicle body are acquired [4]. The prime objective of design 

optimization is to minimize, the acceleration of a vertical 

vehicle body. At the same time constrained are dynamic tire 

load and suspension working space. Vehicle will damage in 

that case if the value of suspension working space is very 

low, in this way un-sprung mass collision with sprung mass 

and damage will occur. In case of consistent tire load is less 

than dynamic tire load, then vehicle tires will rebound the 

road, this provides the result of motion of vehicle in an 

unstable manner. A complex vibrating system is a vehicle 

suspension system which has multiple degree of freedom [5]. 

To isolate the vehicle body from the road input suspension 

system is being used. Dynamics related to the vehicle put 

different needs on the constituent of the suspension system. 

Ride comfort of passenger requires that sprung mass 

acceleration should be small while for dynamic  presentation 

there should be proper road holding i-e consistent force into 

the tires and the road [6]. 

 

2. MATERIALS AND METHODS 

The motivation for this research was to modify Quarter Car 

Model. The derivative free methods were used for the 

optimization of Quarter Car Model. These methods were 

basically designed for unconstrained optimization problems. 

In formulating optimization Quarter Car Model the 

constraints were handled by using exterior penalty functions 

[7-10]. 

2.1 Hooke-Jeeves Method 

For an N-dimensional problem HJ method [11] required an 

initial point x0, a set of N linearly independent search 

directions vi, step-length parameters      δi > 0 and a parameter 

µ >1. The method used two types of moves given below:   

Exploratory Move: This move was made on the current point 

by investigation along each direction according to the 

following formula: 

xnew = x0 ± δi vi   for all i= 1, 2, 3, …, N. 

 
Fig-1: Successful exploratory move 

Pattern Move: When an exploratory move was completed 

and was accomplished successfully, then pattern move was 

executed, by jumping from present base point along with a 

direction connecting and a new point was found. Once a 

pattern move was established it was possible to move as 
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much as allowed. An enlargement parameter ,   1, was 

used for this purpose. The pattern direction was found by the 

formula applied as d =  zE – zb. Therefore the new point, 

through pattern move, was found as given below           

y b =  z E +   d  =  zE +   ( zE – zb ). 

 
Fig-2: Pattern move direction 

2.2 Nelder-Mead Simplex Method 

While considering the initial simplex with three initial points 

i.e.  y
0
 = Best Point, y

1
 = Good Point, y

2
 = Worst Point. Take 

the centroid y
C
 of best and good points. Reflect the worst 

point through centroid, the y
r
 becomes the new point, which 

having equidistance from y
C
 to y

2
. In this method there were 

several operations to be performed. Reflection occurred when 

y
1
 ≥ y

r
 > y

0
.  

Mathematically, the reflected point y
r
 was given as [12] 

                        
and expansion occurred when y

1
 ≥ y

0
 > y

e
.  

Mathematically, the expanded point y
e
 was given as 

                    
In contraction when the reflection point lies between the good 

and best vertex and it was generated two types. Outside 

contraction occurred when y
2
 ≥ y

r
 > y

1
.  

Mathematically, the expanded point y
OC

 was given as 

                   
Inside contraction occurred when y

r
 ≥ y

2
. Mathematically, the 

expanded point y
iC

 was given as 

                  . 

If no one from the above condition was satisfied, then shrink 

was produced. 

 
Fig-3: Steps of Nelder–Mead method 

If all above conditions are annoyed then shrink created, when 

all function values exceeds from function values at the worst 

point then obtained the shrink. Finally acquired the shrink 

simplex as  
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Fig-4: Shrink for Nelder-Mead Method 

2.3. Multi Directional Search Method 

At any iteration in multi-directional search algorithm [13] we 

take n + 1 point. Which define in a non-degenerate simplex 

.The method generates n points along n linearly independent 

search directions. The method uses the following operations 

Consider the initial simplex with three initial points. 

x
B
 = Best Point   x

G
 = Good Point 

 x
W

 = Worst Point 

when we take the best point then we reflect the good and 

worst point along this best point. After reflecting the original 

simplex through the best point we obtain a new simplex. The 

lengths of all the edges are same as those of original simplex. 

Mathematically, the condition is satisfied 

   { (  
 )        }      

   

 
Fig-5: Reflection for MDS Method 

If one of the reflected points is less than the best point then 

we expand the reflected simplex by doubling the length of the 

each edge along the reflected simplex. 

        Mathematically, the condition is satisfied 

       { (   
 )        }     { (   

 )        } 

 
Fig-6:   Expansion for MDS Method 

If the function value of the reflect point is greater than or 

equal to function value of best point then the inside 

contraction exists towards the best point by halving the length 

of each edge. Then the contracted simplex is obtained. 

Mathematically, the condition is satisfied 

   { (   
 )        }      
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Fig-7: Contraction for MDS Method 

Table-1: Parameters for Derivative Free Methods [14] 

Hooks-

Jeeves 
Nelder-Mead 

Multi Directional 

Search 

step length 

∆= (0.5,0.5)t 

Reduction 

parameter 

α = 2 

reflection coefficient 

δr= 1 

expansion coefficient 

δe = 2 

inner-contraction 

coefficient 

δic= -05 

outer-contraction 

coefficient 

δoc= 0.5 

Expansion 

coefficient 

μ =2 

contraction 

coefficient 

θ = 0.5 

 

3. VEHICLE SYSTEM MODELING 
Figure 8 shows a simplified 2 degrees of freedom quarter-

vehicle model. It consists of a sprung mass (m2) supported by 

a primary suspension, which in tum is connected to the un-

sprung mass (m1). The tire is represented as a simple spring, 

although a damper is often included to represent the small 

amount of damping inherent to the visco-elastic nature of the 

tire. The road irregularity is represented by q, while m1, m2, 

Kt. K and C are the un-sprung mass, sprung mass, suspension 

stiffness, suspension damping coefficient and tire stiffness, 

respectively [19]. 

m2 = Sprung mass  

m1=Un-sprung mass 

K=linear spring of stiffness 

Kt=spring stiffness 

C=damping coefficient 

q= road irregularity  

z1=Un-sprung mass displacement  

z2=Sprung mass displacement 

The governing equations of 2 DOF quarter vehicle model are 

 
Performing a Fourier transform 

 
Ratio between the road excitation q and the un-sprung mass 

displacement 1z   is given by  

 
where 

 

 
Fig-8:   Quarter vehicle model 

 

 

 

 
The ratio between the sprung mass displacement z2and road 

excitation q is 

 
So the amplitude ratio between the sprung mass acceleration, 

2z  and the road excitation can be expressed as, 

 
The allowable maximum suspension displacement fd

 

is 

suspension working space. The suspension working space, in 

the response to road displacement input is given as 

 
The dynamic tire load i define as 

 
And the static tire load is   

 
Where g is called gravitational acceleration. Thus the 

amplitude ratio, between the relative dynamic tire load and 

the road input q becomes 

 
Unevenness of the road is main reason of disturbance, for 

either the rider or vehicle structure itself. Road profile 
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elevation is mostly expressed in the form of power spectral 

density (PSD), which is expressed as 

 
Where n, is spatial frequency, and n0

 

is the spatial frequency. 

When vehicle traveled at a speed of v m/s on the road, the 

spatial frequency of the road excitation w is 

w= vn 

In the temporal frequency domain, the power spectrum 

density of the road excitation q is expressed as 

 
Substituting equations 

 
The PSD of response z with respect to q is 

 
Therefore the mean square of the response of z with respect 

to q is 

 
By numerical means of integration, can be calculated  

 

The root mean square (RMS) of the sprung mass acceleration 

can be expressed as 

 
The RMS of the suspension working space is as 

 
The RMS of relative dynamic tire load can be calculated as 

 

 

 

4. RESULTS AND DISCUSSION  
The above problem was solved by Zhongzhe Chiin [19] in 

2008 using Genetic Algorithms, Pattern Search Algorithm 

and Sequential Quadratic Program. The results are available 

in the following table 

Table-2: Initial, optimal points, optimal values and constraints of GA, PSA and SQP 

Initial Points 1st 2nd 3rd 4th 5th 

m1(kg) 10 80 70 80 100 

m2(kg) 10 800 900 100 2000 

Kt(N/m) 10 500000 400000 900000 1300000 

K(N/m) 10 700000 60000 70000 90000 

C(N/m/s) 10 4000 4000 1000 5000 

Optimal Points  

m1(kg) 124.75 83.2 83.2 124.8 124.8 

m2(kg) 764.4 764.4 764.4 764.4 764.28 

Kt(N/m) 559440 559440 559440 722900 701800 

K(N/m) 80480 120720 80480 80480 8525.5 

C(N/m/s) 2564.3 3840 3840 2560 2560 

Constraint-1 0.0381 0.0337 0.0304 0.0382 0.0218 

Constraint-2 2.7725 2.6899 2.3683 3.4936 3.4880 

Sequential 

Quadratic 

Programming 

2z (m/s2) 1.2913 1.5388 1.0703 1.3033 1.3725 

fd (m) 0.038119 0.033658 0.030414 0.038152 0.038104 

GF /  0.36679 0.42545 0.42545 0.4472 0.43675 

Pattern Search 

Algorithm 

2z (m/s2) 1.2913 1.5388 1.0703 1.3033 1.3725 

fd (m) 0.03562 0.03256 0.03214 0.03345 0.03284 

GF /  0.42536 0.42444 0.42345 0.42365 0.42563 

Genetic 
2z (m/s2) 1.0703 1.0703 1.0703 1.0703 1.0703 
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Algorithms 
fd (m) 0.030414 0.030414 0.030414 0.030414 0.030414 

GF /  0.42545 0.42545 0.42545 0.42545 0.42545 

Unfortunately, during the course present research while verification 

of results it was observed that these optimal solutions are optimal by 

no means as the second constraint is violated by significant 

measures of violation. In Table-2, constraint-2 presents the 

mentioned degrees of violations. 

 

Table-3: Feasibility and infeasibility of constraints by HJ, NM and MDS Methods [15, 16] with initial guess (10, 10, 10, 10, 10) 

   Constraint 1 Constraint 2 

Methods Initial Guess (10, 10, 10, 10, 10) -0.0214200404140708 -0.416886375156128 

HJ   

Method 

Optimal 

Solution 

(75.333055, 773.63796, 559430.09268, 

80485.49820, 3846.34606) 
-0.0196775818349617 1.90260376812108 

NM   

Method 

Optimal 

Solution 

(83.200090, 764.4, 559440, 80480.019752, 

3839.986248) 
-0.0195863093648168 1.92111431144006 

MDS   

Method 

Optimal 

Solution 

(83.203090, 764.40, 559440, 80481.019752, 

3839.982648) 
-0.0195861468095005 1.92112263915182 

Table-4: Feasibility and infeasibility of constraints by HJ, NM and MDS Methods with initial guess (80, 800, 500000, 700000, 4000) 

   Constraint 1 Constraint 2 

Methods Initial Guess (80, 800, 500000, 700000, 4000) 0.00155371497965079 8.56246506025105 

HJ   

Method 

Optimal 

Solution 

(81.828276, 772.612951, 559433.636940, 

80475.276058, 3832.910779) 
-0.0195176477216608 1.90413727628248 

NM   

Method 

Optimal 

Solution 

(83.000000, 764.4, 559440.925244, 

80481.957320, 3840) 
-0.0195897708269247 1.92107909503275 

MDS   

Method 

Optimal 

Solution 

(83.002000, 764.41245, 559440.952244, 

80480.957320, 3840.2356) 
-0.0195906626920012 1.92102483892246 

Table-5: Feasibility and infeasibility of constraints by HJ, NM and MDS Methods with initial guess (70, 900, 400000, 60000, 4000) 

   Constraint 1 Constraint 2 

Methods Initial Guess (70, 900, 400000, 60000, 4000) -0.0215632690360327 1.23161130395108 

HJ   

Method 

Optimal 

Solution 

(75.921371, 771.785844, 559441.594091, 

80480.997204, 3832.899095) 
-0.0196292865454194 1.90697315844403 

NM   

Method 

Optimal 

Solution 

(83.201418, 764.399949, 559446.821997, 80480, 

3839.942469) 
-0.0195861144407433 1.92113525269799 

MDS   

Method 

Optimal 

Solution 

(83.101418, 764.399949, 559446.891997, 80480, 

3839.942649) 
-0.0195879093214006 1.92110979926414 

Table-6: Feasibility and infeasibility of constraints by HJ, NM and MDS Methods with initial guess (80, 100, 900000, 70000, 1000) 

   Constraint 1 Constraint 2 

Methods Initial Guess (80, 100, 900000, 70000, 1000) -0.0058980923949602 24.6067659088442 

HJ    

Method 

Optimal 

Solution 

(75.839465, 773.241011, 559449.122690, 

80481.504172, 3831.195590) 
-0.0196122056292944 1.904151628874 

NM   

Method 

Optimal 

Solution 

(83.2, 764.399539, 559442.128269, 40480, 

3839.999993) 
-0.0243872400924713 1.67113469031086 

MDS   

Method 

Optimal 

Solution 

(83.24562, 764.399539, 559442.122869, 

40480.245668, 3839.998883) 
-0.0243865082661877 1.67133891587182 

Table-7: Feasibility and infeasibility of constraints by HJ, NM and MDS Methods with initial guess (100, 2000, 1300000, 90000, 5000) 

   Constraint 1 Constraint 2 

Methods Initial Guess (100, 2000, 1300000, 90000, 5000) -0.0160785517269019 1.53809053090587 

HJ   Method 
Optimal 

Solution 

(76.579800, 767.382309, 559444.634447, 

80482.954919, 3839.018474) 
-0.0196770801214908 1.91540242605257 

NM   

Method 

Optimal 

Solution 

(83.2, 764.4, 559444.306223, 80480.159214, 

3839.981499) 
-0.0195862789970404 1.92112625388938 

MDS   

Method 

Optimal 

Solution 

(83.365480, 764.399999, 559444.362223, 

80480.152914, 3839.918499) 
-0.0195830613388729 1.92117631982157 

In the light of above findings, we apparently are bound to 

believe that the given model is not appropriate or the solution 

provided in [17-19] are not correct so the further attempts are 

required to be made either for new optimal solutions or for 

re-formulating the above model. As for as the study is 

concerned, we emphasize that the considered pattern search 

methods can provide better solutions with smaller degrees of 

constraints violations on the engineering design problems like 

the one considered in this study provided appropriate initial 

guess is used.  
Table-8: Optimal design variables based on the HJ Method for minimizing sprung mass vertical acceleration with 

vehicle speed of 40 m/s 

Initial Points 1st 2nd 3rd 4th 5th 

m1(kg) 10 80 70 80 100 

m2(kg) 10 800 900 100 2000 

Kt(N/m) 10 500000 400000 900000 1300000 

K(N/m) 10 700000 60000 70000 90000 
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C(N/m/s) 10 4000 4000 1000 5000 

Optimal Points  

m1(kg) 75.333055 81.828276 75.921371 75.839465 76.579800 

m2(kg) 773.63796 772.612951 771.785844 773.241011 767.382309 

Kt(N/m) 559430.09268 559433.636940 559441.594091 559449.122690 559444.634447 

K(N/m) 80485.49820 80475.276058 80480.997204 80481.504172 80482.954919 

C(N/m/s) 3846.34606 3832.910779 3832.899095 3831.195590 3839.018474 

2z (m/s2) 1.058116756 1.0637187891 1.0612185520 1.06021516572 1.06444529047 

Table-9: Optimal design variables based on NM Method for minimizing the sprung mass vertical acceleration with  

vehicle speed of 40 m/s 

Initial Points 1st 2nd 3rd 4th 5th 

m1(kg) 10 80 70 80 100 

m2(kg) 10 800 900 100 2000 

Kt(N/m) 10 500000 400000 900000 1300000 

K(N/m) 10 700000 60000 70000 90000 

C(N/m/s) 10 4000 4000 1000 5000 

Optimal Points  

m1(kg) 83.200090 83.000000 83.201418 83.2 83.2 

m2(kg) 764.4 764.4 764.399949 764.399539 764.4 

Kt(N/m) 559440 559440.925244 559446.821997 559442.128269 559444.306223 

K(N/m) 80480.019752 80481.957320 80480 40480 80480.159214 

C(N/m/s) 3839.986248 3840 3839.942469 3839.999993 3839.981499 

2z (m/s2) 1.07033686223 1.07035715260 1.07034278970 1.07033579633 1.07033938996 

Table-10: Optimal design variables based on MDS Method for minimizing sprung mass vertical acceleration with 

vehicle speed of 40 m/s 

Initial Points 1st 2nd 3rd 4th 5th 

m1(kg) 10 80 70 80 100 

m2(kg) 10 800 900 100 2000 

Kt(N/m) 10 500000 400000 900000 1300000 

K(N/m) 10 700000 60000 70000 90000 

C(N/m/s) 10 4000 4000 1000 5000 

Optimal Points  

m1(kg) 83.203090 83.002000 83.101418 83.24562 83.365480 

m2(kg) 764.40 764.41245 764.399949 764.399539 764.399999 

Kt(N/m) 559440 559440.952244 559446.891997 559442.122869 559444.362223 

K(N/m) 80481.019752 80480.957320 80480 40480.245668 80480.152914 

C(N/m/s) 3839.982648 3840.2356 3839.942649 3839.998883 3839.918499 

2z (m/s2) 1.07023686223 1.07044715260 1.07024278970 1.07033579633 1.07029938996 

 

It is evident from Table-8 that the optimal value 1.058116756 

found by HJ Method is the best out of all the results reported 

in this study. The second constraint is violated but by a 

smaller amount of violation. Hence we can conclude that the 

best solution found by HJ method is better in all respects.    

 
5. CONCLUSION  
The outcome performances of Hooke-Jeeves, Nelder-Mead 

and Multi-Directional Search methods experimented via a 

number of initial guesses were carried out on formulated 

Quarter Car Model. It was concluded that performance of HJ 

method was better with respect to its efficiency of solving 

such a problem with minimum computational efforts as 

compared to those of NM and MDS methods. Through this 

work it is recommended that in any environment HJ method 

is a better choice as compared to the class of methods 

involving NM and MDS method. Also the results for HJ 

method are better than the previous works mentioned above. 
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