
International Symposium on Research in Innovation and Sustainability 2014 (ISoRIS ’14) 15-16 October 2014, Malacca, Malaysia

Special Issue

Sci.Int.(Lahore),26(4),1467-1470,2014 ISSN 1013-5316; CODEN: SINTE 8 1467

A BRIEF SURVEY OF PROGRAM SLICING
Amir Ngah, Siti Aminah Selamat

School of Informatics and Applied Mathematics

University Malaysia Terengganu

21030 Kuala Terengganu, Malaysia

Email: amirnma@umt.edu.my

ABSTRACT: Program slicing is a decomposition technique that produces a new sub-program relevant

to a particular computation. Program slicing was first introduced by Weiser in 1981 [27]. Since then,

program slicing has grown and become an important research field in software engineering. This paper

briefly describes the program representation, program slicing techniques and their applications.

KEYWORDS: Program slicing, static slicing, dynamic slicing, conditioned slicing, decomposition slicing.

1.0 INTRODUCTION
Since Weiser’s technique, program slicing has grown and

become an important research field in software

engineering. This fact was endorsed by Binkley and

Gallagher [3], who stated that the number of citations for

the paper by Weiser on program slicing increased

significantly year by year. Recently, there are a number of

papers that have done a survey on program slicing

techniques and it applications [12, 9, 22, 25]. Since

Weiser’s first program slicing technique, many program

slicing techniques have been introduced such as dynamic

slicing [21, 1], forward slicing [2], decomposition slicing

[15], interprocedural slicing [20], conditioned slicing [5],

stop-list slicing [13], amorphous slicing [4], hybrid

program slicing [24] and abstract slicing [19, 28].

Program slicing is a decomposition technique that

produces a new sub-program relevant to a particular

computation. The new sub-program is called a slice, and is

an executable program that is produced from the original

program with respect to the specified slicing criterion.

Slicing criterion is a set of conditions used in the slicing

computation to produce a slice. A basic slicing criterion

uses two main parameters. They are the variable or a set of

variables and the location of interest. This paper is

organized in three main sections. The next section

discusses the representation of programs or systems. This

is followed by a discussion of program slicing techniques

in the third section. The fourth section is about the

applications of program slicing.

2.0 REPRESENTATION OF PROGRAM

There are three different representations used in different

types of slicing such as control flow graphs, program

dependence graph, and system dependence graph. A brief

explanation of these representations is given below.

2.1 Control Flow Graph

Tip [26] states that Weiser’s approach uses data flow and

control flow dependences in order to compute a slice. A

Control Flow Graph (CFG) is a representation of the

program with the combination of nodes and edges from

the start node to the end node. A CFG represents control

dependencies of the program. An example of CFG is

shown in Figure 1. Every statement in the program is

represented by nodes. The flow from one node to another

node is called an edge. Nodes 1 and 4 are called predicate

nodes because they have more than one out going edge. A

path is the flow from the start node (node 1) to the end

node (node 7). Nodes 6 and 7 are non-branching

statements which can be treated as one statement unit [10].

There are four unique paths through the CFG in Figure 1.

Figure 1: The Control Flow Graph

2.2 Program Dependence Graph

A Program Dependence Graph (PDG) is an intermediate

representation of a program using a combination of data

dependences and control dependences of the program [11,

20, 23]. Data dependences are used to represent data flow

relations of the program. Control dependences represent

control flow relationships of the program. Control

dependences are derived from the CFG. For instance, in

Figure 2, statement 7 is dependent on statement 3 because

statement 7 has the use of the variable sum that depends on

its definition at statement 3. The relation of both statements

is called data dependence. Statement 5 and 7 show the

relationship between statement and predicate. Statement 7 is

dependent on statement 5 as a predicate. This dependence is

called the control dependence.

mailto:Email:%20amirnma@umt.edu.my

International Symposium on Research in Innovation and Sustainability 2014 (ISoRIS ’14) 15-16 October 2014, Malacca, Malaysia

Special Issue

1468 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),26(4),1467-1470,2014

(1) read (n);
(2) i := 1;
(3) sum := 0;
(4) product := 1;
(5) while i <= n
(6) {
(7) sum := sum + 1;
(8) product := product * i;

(9) i ++;
(10) }
(11) write (sum);
(12) write (product);

Figure 2: The Program to be Sliced [26]

2.3 System Dependent Graph

Horwitz et al [20] have introduced the concept of System

Dependence Graph (SDG). SDG is an extension of the PDG.

It includes the PDG, which represents the main program of

the system; procedure dependence graphs, which represent

the procedures of the system; and some additional edges.

There are two types of additional edges. These are the

edges that represent direct dependences between a call site

and the called procedure, and edges that represent transitive

dependences due to calls. In SDG, transitive

interprocedural flow dependences are represented by using

heavy bold arcs. The call edges, parameter-in edges, and

parameter-out edges which connect program and procedure

dependence graphs together are represented by using dashed

arrows.

3.0 PROGRAM SLICING TECHNIQUES

3.1 Static and Dynamic Slicing

The first program slicing technique by Weiser was based on

static program analysis [27]. Weiser’s program slices are

called an executable static slice [3]. It is called an

executable because the slices are an executable program and

called static because the computation of slices is performed

without considering the input of the program. Figure 2

shows a program which computes the value of variable sum

and product if the input n is a positive number. A slice of

this program with respect to the slicing criterion (product,

12) is all statements that are involved in the computation of

the variable product at line 12. In other words, all

statements that are involved in the computation of the

variable sum have been excluded from the slice. The

statements that are involve in this slice are 1, 2, 4, 5, 6, 8, 9,

10, and 12.

Korel and Laski [21] have proposed dynamic slicing as a

counterpart of Weiser’s static slicing technique. Their

technique has considered the input values in the

computation of slice. They introduced the concept of the

trajectory which is the path that has actually been executed

for some input. The concepts of data flow and control flow

are used in order to produce Data-data (DD) and Test

Control (TC) relations based on the trajectory. The DD

relation is equivalent to the concept of definition-use (du)

and the TC relation is based on control dependence. A

dynamic slice can be computed by using the DD and TC

relations. The main element in their technique is that they

compute a slice based on a program execution (trajectory)

not a CFG. Agrawal and Horgan [1] have also discussed

dynamic slicing. They have introduced the concept of

Dynamic Dependence Graph (DDG) that is based on the

PDG. The only difference between them is that the DDG

creates a separate node for each occurrence of a statement in

the execution history. In other words, the number of nodes

in the DDG is equal to the number of statements in the

execution history including repeated statements.

3.2 Backward and Forward Slicing

Weiser’s program slicing technique is also known as a

backward slicing. It is known as Backward because the

way edges are traversed using a dependent graph. Weiser’s

backward slicing computes slices using the data flow

analysis that begins by tracing backward the possible

statements that have influences on the variable of interest.

For example, the slice for the program in Figure 2 with

respect to the variable sum at line 11 is statements 1, 2, 3, 5,

6, 7, 9, 10 and 11. The computation of the slice starts at line

11 which is the use of the variable sum. From the use of this

variable sum, the slice will be computed backward using the

CFG. The last definition (def) of the variable sum is at line 7.

From this line all related definition-uses are considered in the

slice. Bergeretti and Carre [2] have introduced the notion of

forward slicing. Forward slicing includes all statements that

depend on the slicing criterion. Forward slice can be obtained

from the PDG. Horwitz et al. [20] have computed forward

slices for interprocedural program based on the SDG.

3.3 Conditioned Slicing

Conditioned program slicing was first introduced by

Canfora et al. [5] and later modified as variants [17,8, 18,

7]. T h e c onditioned program slicing forms a bridge

between the static and dynamic analysis. The conditioned

slicing criterion is a triple, (p, V, n) where p is some initial

conditions of interest and (V, n) are the two elements of the

static slicing criterion.

3.4 Stop-List Slicing

Early program slicing techniques required two parameters: a

variable or a set of variables, and a program location of

interest. All statements related to this slicing criterion are

included in the program slice. Gallagher et al. [13] have

introduced a new technique that has considered a third

additional parameter in the slicing criterion. The third

parameter is called stop-list and is a set of variables that are

not of interest. The computation of a stop-list slice will

exclude all statements that are related to these excluded

variables by using the data-flow dependence analysis. In

theory, this technique has the potential to reduce the size of

slice compared to the traditional slicing techniques. The

evaluation of this technique by Gallagher et al. [13] shows that

the results are encouraging giving a large reduction in the

slice size.

3.5 Decomposition Slicing

Gallagher and Lyle [15] have introduced the term

decomposition slicing. The technique uses slicing to

decompose a program directly into two parts,

decomposition slice and complement. The decomposition

International Symposium on Research in Innovation and Sustainability 2014 (ISoRIS ’14) 15-16 October 2014, Malacca, Malaysia

Special Issue

Sci.Int.(Lahore),26(4),1467-1470,2014 ISSN 1013-5316; CODEN: SINTE 8 1469

slice is built for one variable and is the union of all slices

taken at line numbers of the uses of the given variable. The

calculation of these slices can use any independent slicing

techniques. Therefore, the quality of the decomposition slice

is dependent on the quality of the slice itself. The complement

is the sub-program that remains after the decomposition slice

is removed from the original program.

4.0 APPLICATIONS OF PROGRAM SLICING
4.1 Debugging

The original program slicing technique by Weiser was

developed to aid debugging activities [27]. In debugging, the

purpose is to identify errors that occur in the program.

Program slicing techniques can assist the debugger to detect

errors and the affected statements without considering the

unrelated statements. Program slicing can minimize the size

of the original program to the parts of interest based on the

slicing criterion. The application of debugging has also

motivated the introduction of dynamic slicing [16].

Dynamic slicing [1, 21] can offer a better assistant in

debugging. It can produce a smaller slice compared to static

slicing for a specific program input.

4.2 Program Comprehension

An early part of the software maintenance phase is program

comprehension. Program slicing can be used to assist the

program comprehension process. For instance, Canfora et al.

[5] have used conditioned slicing in the context of program

comprehension and reused existing software. Conditioned

slicing enables the computation of refined code fragments

implementing specific program behaviors. Binkley et al. [4]

have used amorphous slicing for program comprehension.

4.3 Software Maintenance
Software maintenance is always dealing with changes. It

determines whether a change at some parts of the program

will affect the behavior of the other parts of the program.

Program slicing can be used in order for the maintainer to

concentrate only on the modified parts of the program. This

can minimize the chances of introducing unexpected errors.

Gallagher and Lyle [15] have introduced decomposition

slicing that was used in a new software maintenance process

model.

4.4 Software Testing

There are two main structural based testing techniques:

control flow testing and data flow testing. Program slicing

techniques are based on the manipulation of control flow and

data flow graphs. The important part of software testing that

applies program slicing techniques is regression testing.

Slicing based testing techniques have been discussed in [14,

6].

5.0 CONCLUSION
This paper briefly explains the techniques of program slicing.

Since Weiser’s first technique, many program slicing

techniques has been introduced such as dynamic slicing,

forward slicing, and decomposition slicing, and conditioned

slicing. This paper also classifies the slicing techniques into

some applications such as debugging, software maintenance,

program comprehension and regression testing.

 ACKNOWLEDGEMENTS

This research is sponsor by Ministry of Education, Malaysia

Government under Research Acculturation Collaborative

Grant (RACE).

REFERENCES

[1] Hiralal Agrawal and Joseph Robert Horgan. Dynamic

program slicing. In Proceedings of the ACM

SIGPLAN Conference on Programming Language

Design and Implementation (PLDI’90), pages 246–256,

1990.

[2] Jean-Francois Bergeretti and Bernard A. Carré.

Information-flow and data-flow analysis of while-

programs. ACM Transactions on Programming

Languages and Systems (TOPLAS), 7(1):37–61, 1985.

[3] David Binkley and Keith Brian Gallagher. Program

slicing. Advances in Computers, 43:1–50, 1996.

[4] David Binkley, Mark Harman, L. Ross Raszewski,

and Christopher Smith. An empirical study of

amorphous slicing as a program comprehension support

tool. In Proceedings of the 8th International Workshop

on Program Comprehension, pages 161–170, 2000.

[5] Gerardo Canfora, Aniello Cimitile, and Andrea De

Lucia. Conditioned program slicing. I n f o r m a t i o n

& Software Technology, 40(11-12):595–607, 1998.

[6] Omar Chebaro, Nikolai Kosmatov, Alain Giorgetti, and

Jacques Julliand. Program slicing enhances a

verification technique combining static and dynamic

analysis. In Proceedings of the 27th Annual ACM

Symposium on Applied Computing, SAC ’12, pages

1284–1291, New York, NY, USA, 2012. ACM.

[7] Sebastian Danicic, Andrea De Lucia, and Mark Harman.

Building executable union slices using condi- tioned

slicing. In Proceedings of the International Workshop

on Program Comprehension (IWPC’04), pages 89–99,

2004.

[8] Mohammed Daoudi, Lahcen Ouarbya, John Howroyd,

Sebastian Danicic, Mark Harman, Chris Fox, and

Martin P. Ward. Consus: A scalable approach to

conditioned slicing. In Proceedings of the 9th Working

Conference on Reverse Engineering (WCRE’02), pages

109–118, 2002.

[9] Chen Duanzhi. Program slicing. In Preceedings of the

International Forum on Information Technology and

Applications, pages 15–18, 2010.

[10] Elena Dubrova. Structural testing based on minimum

kernels. In Proceedings of the Conference on Design,

Automation and Test in Europe (DATE’05), pages 1168–

1173. IEEE Computer Society, 2005.

[11] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren.

The program dependence graph and its use in

optimization. ACM Transactions on Programming

Languages and Systems (TOPLAS), 9(3):319–349,1987.

[12] Keith Gallagher and David Binkley. Program slicing.

In Proceedings of the Frontiers of Software

Maintenance, pages 58–67, 2008.[13] Keith Gallagher,

David Binkley, and Mark Harman. Stop-list slicing.

International Symposium on Research in Innovation and Sustainability 2014 (ISoRIS ’14) 15-16 October 2014, Malacca, Malaysia

Special Issue

1470 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),26(4),1467-1470,2014

In Proceedings of the IEEE International Working

Conference on Source Code Analysis and Manipulation

(SCAM’06), pages 11–20, 2006.

[14] Keith Gallagher, Tracy Hall, and Sue Black. Reducing

regression test size by exclusion. In Proceed- ings of

the International Conference on Software Maintenance

(ICSM’07), pages 154–163, 2007.

[15] Keith Brian Gallagher and James R. Lyle. Using

program slicing in software maintenance. IEEE

Transactions on Software Engineering, 17(8):751–761,

1991.

[16] Mark Harman and Robert M. Hierons. An overview of

program slicing. Software Focus, 2(3):85–92,2001.

[17] Mark Harman, Robert M. Hierons, Chris Fox, Sebastian

Danicic, and John Howroyd. Pre/post condi- tioned

slicing. In Proceedings of the International

Conference on Software Maintenance (ICSM’01),

pages 138–147, 2001.

[18] Robert M. Hierons, Mark Harman, Chris Fox, Lahcen

Ouarbya, and Mohammed Daoudi. Conditioned slicing

supports partition testing. Software Testing, Verification

and Reliability, 12(1):23–28, 2002.

[19] Hyoung Seok Hong, Insup Lee, and Oleg Sokolsky.

Abstract slicing: a new approach to program slicing

based on abstract interpretation and model checking. In

Proceedings of the Fifth International Workshop on

Source Code Analysis and Manipulation, pages 25–34,

2005.

[20] Susan Horwitz, Thomas W. Reps, and David Binkley.

Interprocedural slicing using dependence graphs. ACM

Transactions on Programming Languages and Systems

(TOPLAS), 12(1):26–60, 1990.

[21] Bogdan Korel and Janusz W. Laski. Dynamic

program slicing. Information Processing Letters,

29(3):155–163, 1988.

[22] Andrea De Lucia. Program slicing: Methods and

applications. In Proceedings of the First IEEE

International Workshop on Source Code Analysis and

Manipulation, pages 142–149, 2001.

[23] Karl J. Ottenstein and Linda M. Ottenstein. The program

dependence graph in a software development

environment. In Proceedings of the 1st ACM

SIGSOFT/SIGPLAN Software Engineering Symposium

on Practical Software Development Environments,

pages 177–184, 1984.

[24] Juergen Rilling and Bhaskar Karanth. A hybrid

program slicing framework. In Proceedings of the

Fifth IEEE International Workshop on Source Code

Analysis and Manipulation, pages 12–23, 2001.

[25] N. Sasirekha, A. Edwin Robert, and M. Hemalatha.

Program slicing techniques and its applications.

International Journal of Software Engineering and

Applications (IJSEA), 2(3), 2011.

[26] Frank Tip. A survey of program slicing techniques.

Journal of Programming Languages, 3:121 189,1995.

[27] Mark Weiser. Program slicing. In Proceedings of the

International Conference on Software Engineer- ing

(ICSE’81), pages 439–449, 1981.

[28] Damiano Zanardini. The semantics of abstract

program slicing. In Proceedings of the Eighth IEEE

International Working Conference on Source Code
Analysis and Manipulation, pages 89–98, 2008.

