ON JORDAN * CENTRALIZERS IN SEMIPRIME GAMMA-RINGS WITH INVOLUTION

Abdul Rauf Khan*, Muhammad Anwar Chaudhry and Imran Javaid

khanks@gmail.com, chaudhry@bzu.edu.pk and imranjavaid45@gmail.com

Centre for advanced studies in Pure and Applied Mathematics, Bahauddin Zakariya University Multan 60800, Pakistan.

ABSTRACT: In this paper we prove that if \(M \) is a 2-torsion free semiprime \(\Gamma \)-ring with involution satisfying \(x\gamma y = x\alpha y \gamma \) and \(f: M \rightarrow M \) an additive mapping such that

\[2f(x\beta y) = f(x)\beta x^* + x^* \beta f(x) \]

for all \(x, \beta \in M, \beta \in \Gamma \), then \(f \) is a Jordan *-centralizer.

Keywords: Semiprime \(\Gamma \)-ring, involution, *-derivation, Jordan *-derivation, left (right) Jordan *-centralizer, \(\Gamma \)-centralizer, commutators.

2010 Mathematics Subject Classification: 17D20, 16W10, 47B47, 16N60.

* Corresponding author: khanks@gmail.com

1 INTRODUCTION

Nobusawa [1] introduced the notion of a \(\Gamma \)-ring, a notion more general than a ring. Barnes [2] slightly weakened the conditions in the definition of a \(\Gamma \)-ring given by Nobusawa. After the study of \(\Gamma \)-rings by Nobusawa [1] and Barnes [2] many researchers have done a lot of work on \(\Gamma \)-rings and have obtained some generalizations of the corresponding results in ring theory (see [3, 4, 5, 6, 7, 8] and references therein). In particular, Barnes [2] and Kyuno [5, 6] studied the structure of \(\Gamma \)-rings and obtained various generalizations of the corresponding results of ring theory.

2 Preliminaries

If \(M \) and \(\Gamma \) are additive abelian groups and there exists a mapping \((., ., .) : M \times \Gamma \times M \rightarrow M \) which satisfies the following conditions:

(i) \((a, \beta, b) \) is an element of \(M \),

(ii) \((a + b)\alpha c = a\alpha b + b\alpha c \),

\[a(\alpha + \beta)b = a\alpha b + a\beta b, \quad \text{and} \]

\[a\alpha(b + c) = a\alpha b + a\alpha c, \]

(iii) \((a\alpha b)\beta c = a\alpha(b\beta c) \), for \(a, b, c \in M \) and \(\alpha, \beta \in \Gamma \), then \(M \) is called a \(\Gamma \)-ring [2].

It is known that from (i) – (iii) the following result follows:

(*') \(0\alpha b = a0b = a\alpha 0 = 0 \) for all \(a \) and \(b \) in \(M \) and all \(\alpha \) in \(\Gamma \) [2].

An additive mapping \(* \) on a \(\Gamma \)-ring \(M \) is said to be an involution if \((x\gamma y)^* = y^* \alpha x^* \) and \((x^*)^* = x \) for all \(x, y \in M, \gamma \in \Gamma \). A \(\Gamma \)-ring \(M \) is said to be commutative if \(x\beta y = y\beta x \) for all \(x, y \in M, \beta \in \Gamma \). A \(\Gamma \)-ring \(M \) is said to be 2-torsion free if \(2x = 0 \) implies \(x = 0 \) for all \(x \in M \). Moreover, the set \(Z(M) = \{x \in M : x\alpha y = y\alpha x \forall \alpha \in \Gamma, y \in M \} \) is called the centre of the \(\Gamma \)-ring \(M \). We shall write \([x, y] = x\alpha y - y\alpha x, x, y \in M \) and \(\alpha \in \Gamma \). We shall make use of the basic commutator identities:

\[[x\alpha y, z] = [x, z]_\beta \alpha y + [x, \alpha y]_\beta z + [x, \alpha z]_{\beta y} \]

and

\[[x, y\alpha z] = [x, y]_\beta \alpha z + [y, \alpha z]_\beta x + [y\alpha x, [x, z]_\beta, \quad \text{for all} \] \(x, y, z \in M \) and \(\alpha, \beta \in \Gamma \). If a \(\Gamma \)-ring satisfies the assumption

\[(**) \quad a\alpha b\beta c = a\beta b\alpha c \]

for all \(a, b, c \in M, \alpha, \beta \in \Gamma \). Then the previous identities reduce to

\[[x\beta y, z] = [x, z]_\beta \alpha y + x\beta [y, z], \]

and

\[[x, y\beta z] = [x, y]_\alpha \beta z + y\beta [x, z], \quad \text{for all} \]

\(x, y, z \in M \) and \(\alpha, \beta \in \Gamma \). An additive mapping \(D: M \rightarrow M \) is called a \(\gamma \)-derivation on \(M \) if \(D(x\gamma y) = D(x)\gamma y^* + x\gamma D(y) \) for all \(x, y \in M \) and \(\gamma \in \Gamma \). An additive mapping \(D: M \rightarrow M \) is called a Jordan *-derivation on \(M \) if \(D(x\gamma x) = D(x\gamma x^*) + x\gamma D(x) \) for all \(x \in M \) and \(\gamma \in \Gamma \). A mapping \(F \) from \(M \) to \(M \) is said to be commuting on \(M \) if \([F(x), x] = 0 \) and centralizing on \(M \) if \([F(x), x] \in Z(M) \) for all \(x \in M, \gamma \in \Gamma \). An additive mapping \(T: M \rightarrow M \) is said to be left (right) *-centralizer if \(T(x\gamma y) = T(x)\gamma y^* \) (\(T(x\gamma y) = x^* \gamma T(y) \)) for all \(x, y \in M, \gamma \in \Gamma \). A *-centralizer is an additive mapping which is both a left and a right *-centralizer. An additive mapping \(T: M \rightarrow M \) is said to be Jordan left (right) *-centralizer if \(T(x\gamma x) = T(x)\gamma x^* \) (\(T(x\gamma x) = x^* \gamma T(x) \)) for all \(x \in M, \gamma \in \Gamma \).

Let \(R \) be a ring. It is known [10] that if a mapping \(T: R \rightarrow R \) is both a left and a right Jordan centralizer then \(T \) satisfies \(2T(x^2) = T(x)x + xT(x) \) for all \(x \in R \) but
an additive mapping \(T : R \to R \) satisfying
\[2T(x^2) = T(x)x + xT(x) \] for all \(x \in R \) need not be a left and a right Jordan centralizer. But in [10] he has also
proved that if a 2-torsion free semiprime ring \(R \) admits an
additive mapping \(T \) satisfying
\[2T(x^2) = T(x)x + xT(x) \] for all \(x \in R \), then \(T \) is a
left and a right centralizer.

In this paper, motivated from the following Example 1.1, we
generalize the identity in [10] for Jordan \(*\)-centralizers in semiprime \(\Gamma \)-rings with involution.

Example 1.1 Let \(R \) and \(Z \) are commutative ring of real
numbers and integers, respectively.
\[
M = M_{2,2}(R) = \left\{ \begin{pmatrix} m & 0 \\ n & k \end{pmatrix} : m,n,k \in R \right\}
\]
Let
\[
\Gamma = \Gamma_{2,2}(Z) = \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} : \alpha,\beta \in Z \right\}
\]
Then \(M \times \Gamma \times M \to M \) is a \(\Gamma \)-ring under usual addition
and multiplication of matrices.
The \(\Gamma \)-ring \(M \) is given by
\[
(A, \chi, B) = A\chi B = \begin{pmatrix}
m_{1,am_2} & 0 \\
n_{1,am_2} + k_1\beta n_2 & k_1\beta k_2
\end{pmatrix}; \quad \alpha,\beta \in Z, m_1,m_2,n_1,n_2,k_1,k_2 \in R
\]
It is easy to verify that \(M \) is semiprime \(\Gamma \)-ring. We define
an additive mapping \(f : M \to M \) by
\[
f = \begin{pmatrix}
m_{1,am_2} & 0 \\
n_{1,am_2} + k_1\beta n_2 & k_1\beta k_2
\end{pmatrix}; \quad \text{where } \alpha,\beta \in Z,
\]
\[
m_1,m_2,n_1,n_2,k_1,k_2 \in R.
\]
Let \(* : M \to M \) is an involution defined by
\[
* = \begin{pmatrix}
m_{1,am_2} & 0 \\
n_{1,am_2} + k_1\beta n_2 & k_1\beta k_2
\end{pmatrix}; \quad \alpha,\beta \in Z,
\]
\[
m_1,m_2,n_1,n_2,k_1,k_2 \in R.
\]
It is easy to check that
\[
2f(A \otimes A) = f(A) \otimes A + A^* \otimes f(A) \quad \text{for all}
\]
\(A \in M, \xi \in \Gamma \). Then \(f \) is a Jordan \(*\)-centralizer.

3 On Jordan \(*\)-centralizers in semiprime \(\Gamma \)-rings with
involution
In this section we prove our result regarding Jordan \(*\)-
centralizers in semiprime \(\Gamma \)-rings with involution.

Lemma 2.1 Let \(M \) be a 2-torsion free semiprime \(\Gamma \)-ring
with involution satisfying \(x \gamma y A z = x A y A y z \) and
\(f : M \to M \) an additive mapping such that
\[
2f(xA\xi) = f(x)A\xi + x^*A^\xi f(x) \quad \text{for all } x \in M, \beta \in \Gamma,
\]
then \(f \) satisfies the identity \([f(x), x^*A^\xi]_\gamma = 0 \).

Proof. We assume that \(M \) is noncommutative (the theorem is trivial when \(M \) is commutative).
Linearizing
\[
2f(xA\xi) = f(x)A\xi + x^*A^\xi f(x),
\]
then using the last relation, we get
\[
2f(xA\xi) = f(x)A\xi + x^*A^\xi f(x) + f(y)A\xi f(x)
\]
Replacing \(y \) by \(2(xy^* + yxy) \) in (2) , we obtain
\[
4f(xA\xi) = f(x)A\xi + x^*A^\xi f(x) + f(y)A\xi f(x) + f(z)A\xi f(x)
\]
Using (2), from the last relation we get
\[
4f(xA\xi) = f(x)A\xi + x^*A^\xi f(x) + f(y)A\xi f(x) + f(z)A\xi f(x)
\]
That is,
\[
4f(xA\xi) = f(x)A\xi + x^*A^\xi f(x) + f(y)A\xi f(x) + f(z)A\xi f(x)
\]
which along with (1) and (2) gives
\[
4f(xA\xi) = f(x)A\xi + x^*A^\xi f(x) + f(y)A\xi f(x) + f(z)A\xi f(x)
\]
Comparing (3) and (4), we get
\[
8f(xA\xi) = f(x)A\xi + x^*A^\xi f(x) + f(y)A\xi f(x) + f(z)A\xi f(x)
\]
Comparing (3) and (4), we get
\[
8f(xA\xi) = f(x)A\xi + x^*A^\xi f(x) + f(y)A\xi f(x) + f(z)A\xi f(x)
Replacing y by $8(xy\beta x)$ in (2), we get
\[16 f(x(\beta y x y x) + (xy y x) = 8 f(x) \beta (x^2 y x y x^2) \]
\[+8x^2 \beta f(x) y x y x^2 + 8 f(x) \beta x y x^2 \]
\[+8(x^2 y x y x^2) \beta f(x). \]

Using (5), from the last relation we get
\[16 f(x(\beta y x y x) + (xy y x) = f(x) \beta (9x^2 y x y x^2 + 3y^2 x y x^2) \]
\[+ (9x^2 y x y x^2 + 3x^2 y x y x^2) f(x) + x^2 f(x) \beta x y x^2 + 3 y^2 x y x^2 \]
\[+ (3x^2 y x y x^2 + y^2 x y x^2) f(x) x y x^2 + (x^2 y x y x^2) + 2x^2 f(x) \beta x y x^2 \]
\[+ x^2 f(x) \beta x y x^2 + 3 x^2 f(x) \beta x y x^2. \]

Using (2), from the last relation we get
\[16 f(x(\beta y x y x) + (xy y x) = f(x) \beta (2x^2 y x y^2 + 6y^2 x y x^2) \]
\[+ 8x^2 y x y x^2 + (6x^2 y x y x^2 + 2y^2 x y x^2) \]
\[+ 8x^2 y x y x^2 \beta f(x) + 4x^2 f(x) \beta y x y x^2 \]
\[- 2x^2 \beta x^2 y^2 f(x) + 2f(x) \beta y x y x^2 \]
\[- 2f(x) \beta x^2 y^2 - 2f(x) \beta (x^2 y x y x^2). \]

Replacing y by $f(x) y x y^2$ in the last relation, we get
\[x^2 \beta y f(x) x^2 y^2 \beta [x^2 y^2 + f(x)] + 2 (x^2 y^2) f(x) \gamma y x^2 \]
\[+ 2(x^2 y^2) y^2 [f(x), x^2] + 2y^2 [x^2 y^2] [f(x), x^2] + \gamma y^2 [x^2 y^2, f(x), x^2] \]
\[+ y^2 [x^2 y^2, f(x), x^2] + y^2 [x^2 y^2, f(x), x^2] \]
\[+ y^2 [x^2 y^2, f(x), x^2] = 0. \]

Replacing y^2 by $f(x) y x y^2$ in the last relation, we get
\[x^2 \beta y f(x) x^2 y^2 \beta [x^2 y^2 + f(x)] + 2 (x^2 y^2) f(x) \gamma y x^2 \]
\[+ 2(x^2 y^2) y^2 [f(x), x^2] + 2y^2 [x^2 y^2] [f(x), x^2] + \gamma y^2 [x^2 y^2, f(x), x^2] \]
\[+ y^2 [x^2 y^2, f(x), x^2] + y^2 [x^2 y^2, f(x), x^2] \]
\[+ y^2 [x^2 y^2, f(x), x^2] = 0. \]
\[a\gamma y\beta y\gamma z\beta b + a\gamma y\beta c\beta z\gamma a = 0 \]
\[\text{for all } y \in M, \; \beta, \gamma \in \Gamma. \]
(17)

Subtracting (16) from (17) we obtain
\[(a\gamma y\beta c - c\beta y\gamma a)\beta z\gamma a = 0 \]
\[\text{for all } y, z \in M, \; \beta, \gamma \in \Gamma. \]
(18)

Replacing \(z \) by \(z\gamma c \beta y \) in the last relation we get
\[(a\gamma y\beta c - c\beta y\gamma a)\beta z\gamma a = 0. \]
(19)

Equation (18) alongwith (17) gives
\[(a\gamma y\beta c - c\beta y\gamma a)\beta z\gamma a\gamma y\beta c = 0. \]
(20)

Subtracting (19) from (20) we obtain
\[(a\gamma y\beta c - c\beta y\gamma a)\beta z\gamma a = 0. \]
(21)

which alongwith semiprimeness of \(M \) implies
\[a\gamma y\beta c = c\beta y\gamma a \]
(22)

Using (22), from (15) we get
\[a\gamma y\beta (b + c) = 0. \]

In other words
\[\left[f(x), x^r \right]_\beta y\beta f(x), x^r \beta x^r \right]_\gamma = 0. \]
(23)

The last relation gives
\[\left[f(x), x^r \right]_\beta y\gamma x^r + x^r y\beta f(x), x^r \beta x^r \right]_\gamma = 0. \]

Which implies
\[f(x), x^r \beta x^r \right]_\gamma y\beta f(x), x^r \beta x^r \right]_\gamma = 0. \]

That is,
\[f(x), x^r \beta x^r \right]_\gamma y\beta f(x), x^r \beta x^r \right]_\gamma = 0. \]

Semiprimeness of \(M \) implies
\[f(x), x^r \beta x^r \right]_r = 0 \]
(24)

Theorem 2.2 Let \(M \) be a 2-torsion free semiprime \(\Gamma \)-ring with involution satisfying \(x\gamma y\alpha z = x\alpha y\gamma z \)
and \(f : M \rightarrow M \) an additive mapping such that
\[2[f(x), x\beta x] = f(x), x\beta x + x\gamma \beta f(x) \]
for all \(x \in M, \; \beta \in \Gamma, \) then \(f \) is a Jordan \(\gamma \)-centralizer.

Proof. By Lemma 2.1, linearizing (24), we get
\[f(x), y\beta y + f(x), x\beta x + x\beta y + y\beta x + f(y), x\beta y + y\beta x \]
\[+ [f(y), x^r \beta y + y^r \beta x]_\gamma = 0. \]

Replacing \(x \) by \(-x \) in the last relation and comparing the relation so obtained with the last relation alongwith 2-torsionfreeness of \(M \), we get
\[f(x), x^r \beta y + y^r \beta x]_\gamma + [f(y), x^r \beta x]_\gamma = 0 \]
(25)

Replacing \(y \) by \(2(y\beta x + x\beta y) \) in the last relation and then using (2) and (24), we get
\[0 = 2[f(x), (x^r \beta)^2 y^r + y^r (\beta x^r)^2 + 2x^r \beta y x^r]_\gamma \]
\[+ [f(y), x^r \beta x + y^r \beta f(x) + f(x), \beta y + x^r \beta f(y), x^r \beta x]_\gamma \]
\[= 2(x^r \beta)^2 [f(x), y^r]_\gamma + 2[f(x), y^r]_\gamma (\beta x^r)^2 \]
\[+ 4[f(x), x^r \beta y \beta x^r]_\gamma + f(x), \beta f(y, x^r \beta x^r]_\gamma \]
\[+ x^r \beta [f(y), x^r \beta x^r]_\gamma + [f(y), x^r \beta x^r]_\gamma, \beta x^r \]
\[+ [y^r, x^r \beta x^r]_\gamma, \beta f(x). \]

That is,
\[2(x^r \beta)^2 [f(x), y^r]_\gamma + 2[f(x), y^r]_\gamma (\beta x^r)^2 \]
\[+ 4[f(x), x^r \beta y \beta x^r]_\gamma + f(x), \beta f(y, x^r \beta x^r]_\gamma \]
\[+ x^r \beta [f(y), x^r \beta x^r]_\gamma + [f(y), x^r \beta x^r]_\gamma, \beta x^r \]
\[+ [y^r, x^r \beta x^r]_\gamma, \beta f(x) = 0 \]
(26)

Replacing \(y \) by \(x \) in the last relation and using 2-torsionfreeness of \(M \), we obtain
\[(x^r \beta)^2 [f(x), x^r]_\gamma + [f(x), x^r]_\gamma (\beta x^r)^2 \]
\[+ 2[f(x), (x^r \beta)^2 x^r]_\gamma = 0, \]

which gives
\[(x^r \beta)^2 [f(x), x^r]_\gamma + 3[f(x), x^r]_\gamma (\beta x^r)^2 = 0 \]
(27)

From (24) we get
\[[f(x), x^r]_\gamma, \beta x^r + x^r \beta f(x), x^r]_\gamma = 0 \]
(28)

From the last relation by easy calculations one gets
\[(x^r \beta)^2 [f(x), x^r]_\gamma = [f(x), x^r]_\gamma (\beta x^r)^2. \]

Using the last relation, from (27) alongwith 2-torsionfreeness of \(M \), we get
\[[f(x), x^r]_\gamma (\beta x^r)^2 = 0 \]
(29)

and
\[(x^r \beta)^2 [f(x), x^r]_\gamma = 0 \]
(30)

From (28) and then using (30) we attain
\[x^r \beta [f(x), x^r]_\gamma, \beta x^r = 0 \]
(31)
0 = 2(x^\beta)^2[f(x), y^\gamma] + 2[f(x), y^\gamma](\beta x^\gamma)^2
+4[f(x), x^\gamma \beta y^\gamma x^\gamma], + f(x)\beta y^\gamma x^\gamma, + f(x)\beta y^\gamma x^\gamma
+[y^\gamma, x^\gamma \beta x^\gamma], \beta f(x) - x^\gamma \beta [f(x), x^\gamma \beta y^\gamma + y^\gamma \beta x^\gamma],
-[f(x), x^\gamma \beta y^\gamma + y^\gamma \beta x^\gamma], \beta x^\gamma
= 2(x^\beta)^2[f(x), y^\gamma], + 2[f(x), y^\gamma], (\beta x^\gamma)^2
+4[f(x), x^\gamma \beta y^\gamma x^\gamma], + f(x)\beta y^\gamma x^\gamma, + f(x)\beta y^\gamma x^\gamma
+[y^\gamma, x^\gamma \beta x^\gamma], \beta f(x) - x^\gamma \beta [f(x), x^\gamma \beta y^\gamma + y^\gamma \beta x^\gamma],
-(x^\beta)^2[f(x), y^\gamma] - x^\gamma \beta [f(x), y^\gamma], y^\beta \beta x^\gamma
-x^\beta \beta [f(x), x^\gamma], - f(x), x^\gamma], \beta y^\gamma \beta x^\gamma
-x^\beta \beta [f(x), y^\gamma], \beta x^\gamma - [f(x), y^\gamma], (\beta x^\gamma)^2
-y^\beta [f(x), x^\gamma], \beta x^\gamma
That is,
(x^\beta)^2[f(x), y^\gamma], + [f(x), y^\gamma], (\beta x^\gamma)^2
+3[f(x), x^\gamma], \beta y^\gamma \beta x^\gamma + 3x^\gamma \beta y^\gamma \beta [f(x), x^\gamma],
+2x^\gamma \beta [f(x), y^\gamma], \beta x^\gamma + f(x)\beta [y^\gamma, x^\gamma \beta x^\gamma],
+[y^\gamma, x^\gamma \beta x^\gamma], \beta f(x) - x^\gamma \beta [f(x), x^\gamma \beta y^\gamma + y^\gamma \beta x^\gamma],
-y^\beta [f(x), x^\gamma], (\beta x^\gamma)^2 = 0\tag{33}
Subtracting \eqref{33} from \eqref{34}, we have
(x^\beta)^2 y^\beta \beta [f(x), x^\gamma], + 3x^\gamma \beta y^\gamma \beta [x^\gamma, [f(x), x^\gamma]],
+2x^\gamma \beta y^\gamma \beta [f(x), x^\gamma], \beta x^\gamma + [y^\gamma, x^\gamma \beta x^\gamma], \beta [x^\gamma, f(x)], = 0,
which alongwith \eqref{30} gives
2(x^\beta)^2 y^\beta \beta [f(x), x^\gamma], + 3x^\gamma \beta y^\gamma \beta \beta [f(x), x^\gamma]
-replacing -[f(x), x^\gamma], \beta x^\gamma by x^\gamma \beta [f(x), x^\gamma], in the last relation, we obtain
(x^\beta)^2 y^\beta \beta [f(x), x^\gamma], + 2x^\gamma \beta y^\gamma \beta \beta [f(x), x^\gamma], = 0\tag{35}
Using \eqref{24}, \eqref{29}, \eqref{30} and \eqref{31}, from \eqref{11} we get
(x^\beta)^2 y^\beta \beta \beta [f(x), x^\gamma], = 0\tag{36}
which alongwith \eqref{35}, gives \(x^\gamma \beta y^\gamma \beta \beta \beta [f(x), x^\gamma], = 0\).
That is,
(x^\beta)^2 y^\beta \beta \beta [f(x), x^\gamma], y^\gamma \beta x^\gamma \beta \beta [f(x), x^\gamma], = 0.
Replacing y by y alongwith semiprimeness of \(M\), we have
\(x^\beta \beta \beta [f(x), x^\gamma], = 0\)\tag{37}
Similarly, we have
\([f(x), x^\gamma], \beta x^\gamma = 0\)\tag{38}
Combining \eqref{1} and \eqref{38}, we get
\(f(x)\beta x = f(x)\beta x^\gamma\) and
\(f(x)\beta x^\gamma = x^\gamma \beta f(x)\) for all \(x \in M\) and \(\beta \in \Gamma\). That is, \(f\) is both a left and a right Jordan \^\gamma-centralizer. Hence \(f\)
is a Jordan \^\gamma-centralizer.

ACKNOWLEDGEMENT

Nov-Dec.
The authors are thankful to the Bahauddin Zakariya University, Multan and Higher Education Commission, Pakistan for the support and facilities provided during this research.

REFERENCES