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ABSTRACT: A glued graph at complete clone  is obtained from combining two graphs by identifying edges 
of  of each original graph. We investigate how to change some properties such as height, big height, Krull dimension, Betti 
numbers by gluing of two graphs at complete clone. We give a sufficient and necessary condition so that the glued graph of two 
Cohen-Macaulay chordal graphs at complete clone is a Cohen-Macaulay graph. Moreover, we present the conditions that the 
edge ideal of gluing of two graphs at complete clone has linear resolution whenever the edge ideals of original graphs have 
linear resolution. We show when gluing of two independence complexes, line graphs, complement graphs can be expressed as 
independence complex, line graph and complement of gluing of two graphs.  
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INTRODUCTION 
The concept edge ideal was first introduced by Villarreal in 

[23], that is, let  be a simple (no loops or multiple edges) 

graph on the vertex set  and the edge set 

. Associate to  is a quadratic square free monomial 

ideal , with  a field, which is 

generated by  such that . An approach to 

studying combinatorial properties of a graph is to examine 

some of algebraic invariants of the edge ideal. Indeed, an aim 

of recent much research has been to create a dictionary 

between algebraic properties of  and properties of .  

In 2003, Uiyyasathain presented a new class of graphs in 

[19], glued graphs, that is, let  and  be any graphs, 

 and  be non-trivial connected and such that 

 with an isomorphism . The glued graph of  and 

 at  and  with respect to , denoted by 

, is as the graph that results from combining 

 with  by identifying  and  in the glued graph. In 

[15], Promsakon and Uiyyasathain characterized graph gluing 

between trees, forests, and bipartite graphs. Also, they could 

give an upper bound of the chromatic number of glued graphs 

in terms of their original graphs. In [21], Uiyyasathain and 

Saduakdee studied the perfection of glued graphs at -clone. 

In [20], Uiyyasathain and Jongthawonwuth obtained bounds 

of the clique partition numbers of glued graph at -clones 

and -clones in terms of their original graphs. In [14], 

Pimpasalee and Uiyyasathain investigated bounds of clique 

covering numbers of glued graphs at -clones in terms of 

their original graphs.  

As mentioned above, the study of glued graphs from 

combinatorial points of view has become an active area, but 

our main purpose of the current paper is to express algebraic 

features of glued graphs at complete clone using 

combinatorial properties. Also, we have tried as much as 

possible to give an accurate description of some properties of 

a glued graph in terms of their original graphs. Furthermore, 

we intend to verify whether the property of being Cohen-

Macaulay, Gorenstein (for chordal graphs) having linear 

resolution transfer from the glued graph to original graphs 

and vice versa. One of the main reasons for the importance of 

gluing of two graphs is the fact that this operation creates a 

larger class of graphs which one can obtain the results on the 

larger graph according to the information of the smaller 

graphs. 

Our paper is organized as follows. In section 2, we give an 

explicit formula for computing the height of glued graph at 

complete clone. Also, we present a lower bound for the big 

height of the glued graph at complete clone and characterize 

the glued graphs satisfying such bound. In section 3, we 

provide a necessary and sufficient condition which the 

equality 

 holds for any  

We obtain explicit formulas for computing 

,  and also we present a 

lower 

bound for . We show that having 

linear resolution of the edge ideal of glued graph at complete 

clone implies that edge ideals of original graphs have linear 

resolution. A simple example illustrates having linear 

resolution the edge ideals of original graphs does not 

guarantee the existence of this property of the edge ideal of 

glued graph at complete clone, then we present a necessary 

and sufficient condition for having linear resolution of the 

edge ideal of glued graph at complete clone. For chordal 

graphs, we provide the conditions that being Cohen-

Macaulay preserves under operation gluing of two graphs at 

complete clone and vice versa. As a result, we obtain a 

necessary and sufficient condition for being Gorenstein of 

gluing of two Cohen-Macaulay chordal graphs at complete 

clone. In Section 4, we give an upper bound for the projective 

dimension and Alexander dual of the edge ideal of the glued 

graph at any clone. For any two connected graphs containing 

a connected subgraph H, we investigate the relation between 

the complement, line graph and independence complex of the 

glued graph at clone  and the complement, line graph and 

independence complex of original graphs. Furthermore, we 

determine a sufficient condition for vertex decomposability 

of the glued graph at any clone. In [16], it is proved that the 

glued graph of connected chordal graphs is chordal. The 

converse is not true in general. We characterize a useful 

condition for being chordal of original graphs when the glued 

graph is chordal. 
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HEIGHT AND BIG HEIGHT 
Let  be a simple (no loops, multiple edges) graph with the 

vertex set  and the edge set . The 

edge ideal of  is generated by  where . 

The complete graph on  vertices, denoted by , is the 

graph with edge set .  

Let  and  be any two graphs with disjoint vertex sets. Let 

 and  be non-trivial connected subgraphs of  and , 

respectively, such that  with an isomorphism . We 

combine  and  by identifying  and  with respect to 

the isomorphism . This resulting graph is called glued graph 

of  and  at  and  with respect to . We denote this 

glued graph by  where  is the copy of  and  

in this glued graph. We refer to ,  and  as the clones of 

the glued graph,  and , respectively, and refer to  and 

 as the original graphs. Thus the combined graph is also 

called the glued graph of  and  at -clone; see [20].  

In this section, we will give an exact formula for the height of 

the edge ideal of the glued graph of two connected graphs at 

complete clone. Furtheremore, we will investigate a lower 

bound for the big height of the edge ideal of such graph. The 

vertex covering number of , , is the smallest number 

of vertices in any minimal vertex cover. We distinguish the 

vertex covering number of the glued graph at complete clone 

 depending on the number of  appeared in minimal 

vertex cover of  with minimum cardinality, for any 

 and .  

Theorem 2.1  Let  and  be any two graphs containing 

subgraph . Then  

 if and only if there exists  such that  

and  where ’s are minimal vertex covers of 

 with  for . Otherwise,  

 
Proof.  Since there exists a vertex  that does not 

appear in minimal vertex cover of  with 

minimum cardinality, it follows that all neighbourhoods of  

in  and  will be used in minimal vertex cover of 

 of cardinality  for .  

 Any vertex cover of  contains of at least  vertices. 

Under the circumstances,  can be covered by  vertices 

in . Hence we get  

 
as required. 

 Applying previous theorem and [24, Corollary 6.1.18] and 

[22, Proposition 7.2.5] yields the following equality. 

Corollary 2.2  Let  and  be any two graphs containing 

subgraph . Then  

 
Let ,  be two distinct edges of . The distance between  

and  in , denoted by , is defined by the 

minimum length  among sequences  

with , where . If there is no such a 

sequence, we define . We say that  and  

are 3-disjoint in  if . A subset  is 

said to be pairwise 3-disjoint if every pair of distinct edges 

,  are 3-disjoint in ; see [7, Definitions 2.2 and 6.3]  

The graph  with  and 

  is called a bouquet. 

Then the vertex  is called the root of , the vertices  

flowers of , and the edges  stems of ; see [26, 

Definition 1.7]. We set  

, 

      

 
           

 
The type of  is defined by ; see [12].  

Let us recall the concept semi-strongly disjoint that was 

introduced by Kimura in [12, Definition 5.1]. A set 

 of bouquets of  is said to be semi-

strongly disjoint in  if the following conditions are satisfied:  

1).  for all .  

2). Any two vertices belonging to  are not adjacent in .  

We set  

 

 
Definition 2.3 (22, Definition 7.7.23) Let  be a graph. The 

cardinality of the largest minimal vertex cover of  is called 

the big height of .  

In [4, Theorem 3.3], N. Erey showed the following equality:  

Lemma 2.4  For any simple hypergraph , the equality 

 holds.  

Theorem 2.5  Let  and  be any two graphs containing 

subgraph . Then  

 
 which  is the vertex of  with maximum degree in 

.  

 Proof. Using Lemma 2.4, it suffices to construct a semi-

strongly disjoint set  of bouquets of . Assume 

that  is a bouquet with 

 and 

 where  is the vertex of  

with maximum degree in . Setting , any 

vertices of  and  can belong to no bouquets 

other than  in , by definition. Suppose that  is the semi- 

strongly disjoint set of bouquets of  with the 

maximum cardinality of flowers for . Put 

. Then  

 
hence one derives the required inequality.  

Theorem 2.6 [16, Theorem 2.2] Let  and  be connected 

chordal graphs and  be a connected subgraph of  and . 

Then  is a chordal graph.  

Example 2.7 (The sharpness of the lower bound in Theorem 

2.5) Put .    

• Suppose that  be a pseudo- complete graph. The notation 

pseudo- complete graph was introduced by authors in [16]. In 

such case , applying [12, Corollary 

5.6] which the value is precisely computed in [16, Theorem 

4.8]. Furthermore, S. Jacques was presented an explicit 

formula for computing the projective dimension of the 

complete graphs in [11, Corollary 4.2.9]. Therefore, by 

placing the amounts in Theorem 2.5, the desired equality 

follows.  
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• Suppose that  be a lollipop graph where the -

lollipop graph  is a graph obtained by joining the 

complete graph  to the path graph  by a bridge. The 

authors computed the projective dimension of such graphs in 

[17, Theorem 4.3]. Also, using [11, Corollary 7.7.35], one 

can obtain the projective dimension of the path graphs. By 

placing the values in Theorem 2.5, one derives the equality.  

Theorem2.8 (Auslander and Buchsbaum) [13,Theorem 19.1] 
Let  be a Notherian local ring and  a finite -module. 

Suppose that ; then  

 
Corollary 2.9  Let  and  be chordal graphs containing 

subgraph . Then  

 
 which  is the vertex of  with maximum degree in 

.  

Proof. Applying Theorems 2.5, 2.6, 2.8 and [12, Corollary 

5.6], we obtain the desired inequality.  
  

LINEAR RESOLUTION AND COHEN- 

MACAULAYNESS 

Let  be a monomial ideal in a polynomial ring 

. Then we can associate to  a minimal 

graded free resolution of the form  

 
where  and  is the -module obtained by shifting 

the degrees of  by . The number  is called the th 

graded Betti number of .  

If  is the smallest degree of a generator of ideal , then the 

Betti numbers  form the so called linear stand of . 

An ideal  generated by elements all of degree  is said to 

have a linear resolution if  for all .  

The regularity of , denoted by , is defined by  

 
The projective dimension of , denoted by , is defined 

by  

 
Lemma 3.1  Let  and  be any two graphs containing 

subgraph  and  such that 

 and . If  is a 

disconnected subgraph, then .  

Proof. Suppose that . Thus one can write 

 where  and  and 

. Since any vertex of  is adjacent to all vertices of 

 in , then there is a path in  
that joins  and , for any  and , which is a 

contradiction.  

Theorem 3.2 [8, Theorem 3.2.4] Let  be a simple graph 

with the edge ideal . Then for all  

 

 

 
Theorem 3.3  Let  and  be any two graphs containing 

subgraph . Then  

 
for any  if and 

only if for any vertex  one has  or 

, but not both.  

 Proof.  By Theorem 3.2, we may choose the set 

 where  and the number of 

connected components of  is at least two. 

Consider the following cases:   
1.Take The only contribution to 

 is of  whenever the 

number of connected components of  is at 

least two. Summing  over all 

subsets  satisfying these properties, we have 

.  
2. Take . Replacing  by  leads to similar result 

as that of  previous case.  

We claim that there is no subset  with 

 which , , 

 and  is disconnected. 

Suppose that there exists a subset  that 

holds in situation described. Since  is 

disconnected and any vertex of  is adjacent to 

any vertex of  in , so we must 

have a vertex  such that  is adjacent to all 

vertices of  and  in , 

a contradiction. Also, note that by Lemma 3.1, there is no 

subset  which  and 

 is disconnected. Therefore, summing all 

possibilities provides the result. Note that the subset 

 where  and the number of connected 

components of  is at least two, is considered 

in both cases 1 and 2 and hence subtract  from 

the rest. 

 Assume that there exist  such 

that  and . Put  and 

 where  and . 

Thus  consists of two connected components, 
hence the equality (*) does not hold by Theorem 3.2, which is 

a contradiction.  
Lemma 3.4 [24, page 192] Let  be the edge 

ideal of a graph . If  

 
is the minimal graded resolution of . The value  is equal 

to the number of unordered pairs of lines  such that  

and  are independent lines that cannot be joined by an edge.  

Theorem 3.5  Let  and  be any two graphs containing 

subgraph . Then  

 
where  

 

.Proof. To compute , using lemma 3.4 we 

need count the number of unordered pairs of edges  

such that . Let  such 

that . The number of the edges satisfying 

this property equals . Similarly, there exist  

unordered pairs of edges  of  such that 

. Let  be the set described above and 

. We claim that . If 
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, then  is adjacent to  by 

. Hence, , which is a contradiction. 

Also, if , then , this 

means that there exists  such that , a 

contradiction.  

Now, suppose that  and  which 

. Set  and  such 

that . If there exists  or 

, then one obtains . 

Therefore, the contribution to  is of  

whenever we have  and , 

that the number of unordered pairs satisfying this property is 

equal to , with the notation above. A similar statement 

holds if one replaces  

by  and  by  in previous case. Note that if the edges 

 and  which 

and then 

. Summing all possibilities, it 

follows the desired formula.  

Definition 3.6 (9, page 10) Two edges  and  of the 

graph  is said to be  if :   

1.   

2. , ,  and  are not edges in .  

Theorem 3.7 Let  and  be any two graphs containing 

subgraph . Then  

 

 
 where  

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
Proof. By Theorem 3.2, we need to count the number of 

induced subgraphs of  consisting of three disjoint 

edges. It is possible to take three disjoint edges only of  

or only of . The number of the edges satisfying this 

property equals to  or .  

One might consider the edges  such that 

,  and  

which the number of these edges is equal to  and 

also we have , hence there can 

exist   induced subgraphs consisting 

of three disjoint edges satisfying these properties. Replacing 

 by  leads to similar result as that of                  

previous case. Moreover, one can consider the edges 

 such that ,  and 

 Let ,  and 

. If there exist the edges , , 

,  in  or the edges  and , 

,  in , then  or  are not 

disjoint. Therefore, in our situation, the contribution to 

 is of  whenever the edges 

 and  are disconnected. With the notation 

above, the number of induced subgraphs consisting of these 

edges is equal to .  

It is possible to suppose that the edges  such that 

 and ,  in 

which . In the situation considered,  and 

 are not necessarily disjoint. Let , 

 and  which . If there 

are not the edges , ,  and  in , 

then the induced subgraph on the vertex set 

 consists of three disjoint edges. With 

the notation above, the number of induced subgraphs 

consisting of these edges is equal to . Replacing  by  

leads to similar result as that of previous case.  

Now, suppose that the edges  such that 

 and , in which 

 and . Let , 

 and  which . Using 

similar argument as above, we must have 

With the notation above, the 

number of induced subgraphs consisting of the edges 

satisfying these properties is equal to . Replacing  by 

 leads to similar result as that of previous case. Assuming 

all possibilities, our desired  result follows.  

Corollary 3.8  Let  and  be any two graphs containing 

subgraph . Then  

 Proof. By Theorem 3.2, we may consider induced subgraphs 

of  containing  disjoint edges. Since any 

edge of  belongs to  or , we derive 

 by counting such induced 

subgraphs in  or . Also, it is possible to choose  disjoint 

edges of  and  disjoint edges of . 

Applying Theorem 3.2, the number of the induced subgraphs 

containing  disjoint edges of  and  disjoint 

edges of  is equal to  and 

, respectively. On the other hand, 

since the edges contain no vertices of , then induced 

subgraph on the vertices contains  disjoint edges of 

. Hence, there are 

 induced 

subgraphs of this type. Counting all the possibilities, we 

obtain . Note 

that  cannot equal to , because it has been counted in 

case 1. Summing all the described cases, we obtain the 

desired bound.  

In 1990, Fröberg presented a combinatorial characterization 

of the edge ideals having linear resolution.  

Theorem 3.9 (Fröberg’s Theorem) [2, Theorem 3.3] Let  be 

a graph. Then  has a linear resolution if and only if  is 

a chordal graph.  

Theorem 3.10  Let  and  be any two graphs containing 

subgraph . If  has a linear resolution, then 

 and  have a linear resolution.  
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Proof. Using Fröberg’s Theorem, it suffices to show that  

and  are induced subgraphs of . Suppose 

that , then . We claim that 

, because if not, 

 implies that , hence it 

follows that , contradicting the fact that  is 

subgraph of . In the same way, one can prove that  is 

an induced subgraph of .  

It is natural to ask if the converse of Theorem 3.10 is true or 

false. That is to say, if  and  have linear resolution, 

then does  have a linear resolution?  

Example 3.11 Consider  and . By 

computation by CoCoA, we see that  has the minimal 

graded free resolution as:  

 
Then  and  have linear resolution. Also, by 

computation we deduce that  has the minimal 

graded free resolution as:  

 
It follows that  does not have a linear 

resolution.  

The example given above shows that the converse of 

Theorem 3.10 is not true in general.  

Theorem 3.12 Let  and  be any two graphs containing 

subgraph . Suppose that  and  have linear 

resolution. Then  has a linear resolution if and 

only if the following conditions are satisfied:  

(i) There exist no edges  and  

which are disconnected.  

(ii) There exist no edges  and 

 which  and  

such that  and  are disconnected.  

(iii) There exist no edges  and 

 which  and  such 

that  and  are disconnected.  

Proof.  Assume that condition (i) does not satisfy. Thus 

there exist two edges  and 

 which are disconnected. Since , 

,  and  are edges in , then they 

form a cycle of length four in , a contradiction 

to our hypothesis that  has a linear resolution. 

The conditions (ii) and (iii) follow using similar argument. 

 We claim that there exist no cycle without chord  of 

length  in . Being Chordal  and  

guarantees to the existence of at least a vertex  

and a vertex  in  which are adjacent. 

Further vertex, , can belong to only  or , 

because if  then  has a chord . 

Consider . If  implies that  

be a chord. Otherwise, , hence we have 

 which means . Now assume that 

. If  then  is a chord. 

Suppose that . It implies that 

, hence . If  then it may 

happen  or . In the case that 

, it follows that  is adjacent to  and in the 

case ,  and  are adjacent to , which 

proves the claim.  

Now, it remains to show that there exists no cycle of length 

four in . Suppose that  contains 

the cycle . Since all of the vertices of  are adjacent in 

, then no two vertices of  can join in 

. On the other hand, by assumption  and  

are chordal graphs, hence  contains at least a vertex of 

 and a vertex of . Assume that there are two non-

adjacent vertices of  in . It follows that the verices of 

 and  are adjacent in , a 

contradiction. Consider the case that there is unique vertex of 

 in . Suppose that two non-adjacent vertices of  belong 

to  which means there exist two 

disconnected edges. Thus we reach a contradiction to 

condition (ii)(condition (iii)). If there exists no vertex of  in 

, it implies that we have two disconnected edges, a 

contradiction to condition (i). This completes the proof.  

A simplicial complex  on the vertex set  is a collection of 

subsets of  such that  and  implies . A 

free vertex is a vertex which belongs to exactly one facet. A 

stable set or clique of  is a subset  of  such that 

 for all  with . We write  for the 

simplicial complex on  whose faces are the stable 

subsets of . The graph  is called Cohen-

Macaulay(Gorenstein) over if  is a 

Cohen-Macaulay (Gorenstein) ring, and is called Cohen-

Macaulay (Gorenstein) if it is Cohen-Macaulay(Gorenstein) 

over any field; see [10].  

Herzog, Hibi and Zheng classify all Cohen-Macaulay chordal 

graphs as follows. 

Theorem 3.13 [10] Let  be a field, and let  be a chordal 

graph on the vertex set . Let  be the facets of 

 which admit a free vertex. Then the following 

conditions are equivalent:   

1.  is Cohen-Macaulay;  

2.  is Cohen-Macaulay over ;  

3.  is unmixed;  

4.  is the disjoint union of .  

Theorem 3.14  Let  be a chordal graph on the vertex set 

, and let  be the facets of  which admit a 

free vertex. Also assume that  be a chordal graph on the 

vertex set  and  be the facets of  which 

admit a free vertex. If  and  be Cohen-Macaulay then 

 is Cohen-Macaulay if and only if there exist 

 and  such that  or 

 or  and other facets of  and 

 containing free vertex be pairwise disjoint.  

Proof.  We proceed by contradiction assuming that 

 and  for some  and . 

Pick the facets of . Since  is 

Cohen-Macaulay, then the vertices of  belong to exactly 

one facet in clique complex , by Theorem 

3.13. Without loss of generality, assume that . Since 

, there is  which is not covered by any facet 

with free vertex of , because  is Cohen-

Macaulay. Therefore, we have shown that  is not 

Cohen-Macaulay, a contradiction.  

To show the second part, suppose that there exist  

and  such that . Since , then 

there exist  and . We may assume, 

without loss of generality, that the vertices of  is 

contained in the facet  of . Note that being 

Cohen-Macaulay of  implies that the vertices of 
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 is contained in either  or . Also, no other facet of 

 which admit a free vertex can contain , because  is 

Cohen-Macaulay. Hence  does not belong to any facet with 

free vertex in , a contradiction.  

 It suffices to show that the disjoint union of the facets 

containing free vertex of  is , by 

using Theorems 2.6 and 3.13. Take an arbitrary vertex 

.    

 1. Suppose that  Since  is Cohen-Macaualy, 

hence  belongs to exactly one facet having free vertex of 

;  

2. Suppose that  Since  is Cohen-Macaualy, 

hence  belongs to exactly one facet having free vertex of 

;  

3. Suppose that . Since  and  are Cohen-

Macaulay, then there exist  and  such 

that  and . Hence, using assumption we get 

 or  or . Therefore, 

the vertex  is contained in a facet which admit a free vertex 

in , as required.  

Corollary 3.15  Let  be a chordal graph on the vertex set 

, and let  be the facets of  which admit a 

free vertex. Also assume that  be a chordal graph on the 

vertex set  and  be the facets of  which 

admit a free vertex. If  be Cohen-Macaulay then 

 and  are Cohen-Macaulay if and only if there are 

 and  such that  or 

 or  and other facets of  and 

 containing free vertex be pairwise disjoint.  

Proof.  With the same arguments as used in the proof of 

Theorem 3.14, one can show the desired conclusion.  

 First assume that there exist  and  

such that . We will show that any vertex of 

 and  is contained in a facet having free vertex of 

 and , respectively. Consider the vertices 

 and Since  is 

Cohen-Macaulay, then there is  such that 

. We can repeat the same argument to obtain  

which  and by assumption . Hence 

 and  are Cohen-Macaulay, by Theorem 3.13.  

Now suppose that  or . Applying 

the same argument, the desired result yields.  

Lemma 3.16 [10, Corollary 2.1] Let  be a Cohen-Macaulay 

chordal graph, and let  be the facets of  which 

have a free vertex. Let  be a free vertex of  for 

, and let  be the induced subgraph of  on the 

vertex set . Then  is Gorenstein, if and only if  is a 

disjoint union of edges. 

Theorem 3.14 and Lemma 3.16 imply the following 

characterization of Gorenstein glued graph at complete clone:  

Corollary 3.1 Let  be a Cohen-Macaulay chordal graph on 

the vertex set , and let  be the facets of  

which admit a free vertex. Also assume that  be a Cohen-

Macaulay chordal graph on the vertex set  and  

be the facets of  which admit a free vertex. If there are 

 and  such that  or 

 or  and other facets of  and 

 containing free vertex be pairwise disjoint, then 

 is Gorenstein if and only if  and  be 

Gorenstein and . 

SOME FACTS ON GLUING OF TWO GRAPHS AT 

ARBITRARY CLONE 

The aim of this section is to give some properties of gluing of 

two graphs, line graphs or independence complexes at 

arbitrary clone.  

Lemma 4.1 [6, Lemma 2.3] Let  be a simple graph with 

edge ideal . Then  

   

 
and the minimal generators of  correspond to minimal 

vertex covers.  
 Theorem 4.2  Let  and  be connected graphs containing 

a connected subgraph . Then  

 
emma 4.3 [23] For any graph  we have 

.  

Lemma 4.4 [5, Proposition 3.16] Let  and  be monomial 

ideals of . Then we have:    

1 ;  

2. .  

Corollary 4.5 Let  and  be connected graphs containing 

a connected subgraph . Then we have:   1. 

; 

2.  

 
Proof. 1. Applying Theorem 4.2 and Lemmas 4.3 and 4.4, we 

obtain  

 

 

 
 2. We have . Using 

Lemmas 4.3 and 4.4, one obtains  

 

 

 

 
 as required.  

Let  be a graph on the vertices . The complement 

graph of , , is a graph with the same vertex set such that 

the vertices  and  are adjacent in  if and only if  and 

 are non-adjacent in .  

Theorem 4.6 Let  and  be connected graphs containing a 

connected subgraph . Then the relation 

 holds if and only if  be an 

induced subgraph of  and  or  be an induced 

subgraph of  and .  

 Proof.  Without loss of generality, we may assume that 

 be an induced subgraph of  and , hence 

 and . On the other 

hand, since  is an induced subgraph of , then  will be 

induced subgraph of  and . Hence, it 

follows the required equality.  

 First we show that  or , 

because if not, there are  and 

, then . On 

the other hand,  and  imply that 

, a contradiction. Without loss of 

generality, we may assume . To complete the 

proof we now show that . Suppose that there 

exist  such that  but 
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. One can conclude  then 

. Also, we have that  and 

, hence , which is a 

contradiction.  

Assume that , then there is  such that 

 or there exists a vertex  such that 

. Since  is an induced subgraph of , we must 

have . It follows that , 

a contradiction. If , then we must have 

. By definition of gluing,  

but , a contradiction.  

Definition 4.7 Let  be a connected graph. 

The line graph  of  is the graph generated by 

 such that for any ,  is 

adjacent to  in  if and only if .  

Lemma 4.8  Let  and  be connected graphs containing a 

connected subgraph Then  is a 

subgraph of .  

Proof. Clearly . 

Assume that  be an edge of . Then 

 or . Without loss of 

generality, suppose that . Using definition, 

 such that , hence 

 and . It follows that 

, as desired.  

Theorem 4.9 Let  and  be connected graphs containing a 

connected subgraph . Then 

 if and only if for any 

 and , we have .  

Proof.  We proceed by contradiction. Suppose that there 

are  and  such that 

, then . On the other hand, 

the assumption  implies that  and 

thus . Although  and 

, but  which is a 

contradiction.  

 Applying Lemma 4.8, it suffices to show that 

 is a subgraph of 

Clearly,  

Assume that 

One can conclude that 

 and . Consider the 

following cases:    

 1.  , since , then . 

It follows that .  

 2.  , since , then . 

It follows that .  

Note that the case  and  

does not need to verify, because we have  using 

assumption. Therefore  is a subgraph of 

, as asserted.  

Let  be a graph on the vertex set . We can associate to 

 a simplicial complex, denoted by , that its faces 

correspond to independence sets of . The simplicial 

complex  is called independence complex of .  

A natural question is whether it is true that if  be a subgraph 

of  then . In general, answer to this question is 

negative, as the following simple example shows.  

Example 4.10 Let  be a graph with the vertex set  

and the edge set . Conisder  with 

 and . Then  is a 

simplicial complex that its facets are ,  and , but 

facets of  are as  and . Hence,  is not a subset 

of .  

Lemma 4.11  Let  be a subgraph of . Then  if 

and only if  be an induced subgraph of .  

Proof.  Assume that there are  such that 

 but , hence  but 

, a contradiction.  

 Suppose that  be a face of . Then  is an independent 

set in . Also, it remains an independent set in , because if 

there exist  such that , contradicting to 

the fact that  is an induced subgraph of .  

Definition 4.12  A facet complex over a finite set of vertices 

 is a set  of subsets of , such that for all ,  

implies .  

Definition 4.13 [1, Definition 2.2] Let  be a facet complex. 

A sequence of facets  is called a path if for all 

, we have . We say that two 

facets  and  are connected in  if there exists a path 

 with  and . Finally, we say that is 

connected if every pair of facets is connected.  

Definition 4.14  Let  and  be two simplicial complexes 

and let  and  be connected simplicial 

complexes such that  with an isomorphism . We 

define the glued simplicial complex of  and  at  and 

 with respect to  as the simplicial complex that results 

from combining  with  by identifying  and  with 

respect to the isomorphism . If  is the copy of  and  

in the glued simplicial complex, then we denote the glued 

simplicial complex by .  

Theorem 4.15  Let  and  be connected graphs and  be 

an induced subgraph of  and . Then  

 
Proof. Suppose that  be a face of . We need 

to verify the following cases: 

1. Take  but . If  not be an independent set 

in , then there exist  such that , a 

contradiction to hypothesis. Hence we obtain that 

. Since  is an independent set in , then it 

remains independent in . Thus .  

2.  Take  but . By the same reason as before, 

we have that .  

3. Take . We claim that  will be independent in 

. Because if there exist  which are 

adjacent in , then  or 

, while  and  are non-adjacent vertices in , 

which is a contradiction to our assumption. 
Corollary 4.16  Let  and  be connected graphs and  be 

an induced subgraph of  and . Then 

 if and only if  or .  

Proof.  Suppose that  and  and there exist 

 and . Since 

, then  is a face of . 

On the other hand,  is not a face of , because of 

. Also,  is not a face of , since 

. Furthermore,  is not a face of , because 

of . Therefore,  is not a face of 

, a contradiction.  
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Now, assume that there exist  and 

, then at least one of  or , say 

, does not belong to . Also, at least one of  or , say 

, does not belong to , because  is an induced 

subgraph of  and . Hence we have  is a face of 

. On the other hand,  and  

imply that  is not a face of , a 

contradiction.  

 Without loss of generality, we suppose that . It 

follows that  and then . On 

the other hand, by Lemma 4.11 we obtain that , and 

hence . It follows the required equality. 

A simplicial complex  is recursively defined to be vertex 

decomposable if it has only a facet or else has some vertex  

so that   

1.Both and  are vertex decomposable, and  

2. No face of  is a facet of .  

Recall that a simplicial vertex is a vertex  such that closed 

neighbourhood of  is clique. A graph  is called vertex 

decomposable if its independence complex is vertex 

decomposable.  

Lemma 4.17 [25, Corollary 5.5] If  is a graph such that 

 has a simplicial vertex for any independent set , 

then  is a vertex decomposable.  

Theorem 4.18 Let  and  be the graphs such that 

 has a simplicial vertex for any independent set  

and . If for any independent set  and 

, we have that , then  is a vertex 

decomposable.  

Proof. By Lemma 4.17, it suffices to show that for any 

independent set ,  has a simplicial 

vertex. For any independent set  of , we 

investigate the following cases:    
1. The independent set  contains the vertices of . By 

assumption,  has a simplicial vertex, as , which 

does not belong to , since . Hence one can 

consider  as the simplicial vertex of .  

 2. The independent set  contains the vertices of . 

Applying the same argument as before, it yields the 

desired result.  

3.The independent set  can be written as  

where ’s are independent sets in ,  and , 

respectively and . Since  and 

 for , and also  and  are 

independent sets, it implies that  for . 

Hence . From assumption 

 for , it follows that  and 

 have no vertex of . Since there are 

the vertices  and  such 

that  and  are clique, then  and  can be 

considered the simplicial vertices of , 

as required.  

Notice that gluing of two chordal graphs is a chordal graph. 

The converse does not hold as the following example shows. 

Put  with the edge set , 

 with the edge set . Let  be a 

subgraph of  and  with the edges , . Observe 

that  is a chordal graph whereas  is not a 

chordal graph.  

Theorem 4.19  Let  and  be connected graphs containing 

a connected subgraph  and let  be a chordal 

graph. Then  and  are chordal graphs if and only if  be 

an induced subgraph of  and .  

Proof.  Assume that  is not a chordal graph, hence there 

exists a cycle  of length  in . By hypothesis, gluing 

of  and  at clone  does not create a new edge. Then  

is a cycle in , contradicting to the fact that 

 is a chordal graph.  

 Suppose that there are two vertices  such that 

, but  or . Without 

loss of generality, assume that . Put  

with edges , , ,  and  be a subgraph 

with edges  and , also  be a chordal graph such 

that . Hence  is a chordal graph 

whereas  is not a chordal graph, which is a contradiction.  
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