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ABSTRACT: This paper proposes a Bayesian repetitive group sampling plan for the application of attribute quality 

characteristics under the conditions of gamma-Poisson distribution. The optimal design parameters of the proposed plan such 

as the sample size and the acceptance numbers are determined based on two points on operating characteristics curve 

approach and by minimizing the average sample number since any sampling plan with minimum average sample number is 

always preferred. Extensive tables are also developed for easy selection of the optimal parameters of the proposed plan for 

selected combinations of two quality levels and the results are explained with examples. The proposed plan can be applied 

when the lifetime of the product follows the Gamma-Poisson distribution.  
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1. INTRODUCTION 
In recent years, product quality has become one of the most 

important aspects that differentiate different commodities in a 

global business market. To ensure the quality of the products, 

there are two major techniques available in the statistical 

quality control literature. They are termed as statistical 

process control and statistical product control.  Acceptance 

sampling is one of the major areas of statistical quality 

control which comes under statistical product control. 

Inspection of raw materials or finished products using 

acceptance sampling is one aspect of quality assurance. It is 

well known that the acceptance sampling plans are used to 

reduce the cost of inspection. The acceptance sampling is also 

useful in situations where testing is destructive, the cost of 

100% inspection is extremely high, the time taken would be 

too long, the inspection error is too high and the product 

liability risks are serious.  

In the concept of acceptance sampling, three major areas of 

sampling are available, one is attributing sampling, the 

second one is variables sampling and the last one is mixed 

sampling. Attributes sampling constitutes one of the vital 

areas of acceptance sampling. There are several sampling 

plans available in the literature for the inspection attribute 

quality characteristics. Some of them are called conventional 

sampling plans and some of them are called special purpose 

plans. Single sampling plan, double sampling plan and 

sequential sampling plan are called conventional sampling 

plans. Some of the special purpose plans are chain sampling 

plan, multiple sampling plan, repetitive group sampling 

(RGS) plan, etc. Single sampling plan is one of the simplest 

attributes sampling plans which involves two parameters 

namely the sample size n and the acceptance number c. The 

double sampling plan can be used to minimize the producer’s 

risk. In double sampling if the results of the first sample are 

not definitive in leading to acceptance or rejection of a lot, a 

second sample is taken which then leads to a decision on the 

disposition of the lot. This approach makes sense not only as 

a result of experience, but also the mathematical properties of 

the procedure. Various special purpose plans have been 

developed to serve for certain special purposes. 

In all the attributes sampling plans, the basic assumption is 

that the lot or process fraction defective is constant, which 

indicates that the production process is stable. However, in 

practical situations, the lots formed from a process will have 

quality variations which are due to random fluctuations. 

These variations are classified into two, one is within-lot 

variation and the other is between-lot variation. When the 

second type variation is more than the first type of variation, 

the fraction non-conforming items in the lots will vary 

continuously. In such cases, the decision on the submitted 

lots should be made with the consideration of the second type 

of variation. so that the conventional sampling plans cannot 

be applied. Instead, sampling plans based on Bayesian 

methodology can be applied with the prior knowledge on the 

process variation in making a decision on the disposition of 

the lot. For further details about the prior and posterior 

distributions of the lot fraction non-conforming, one can refer 

Guild and Raka [1], Hald [2], Case and Keats [3] and Dyer 

and Pierce [4]. 

In the Bayesian theory, it is found that the gamma 

distribution is a natural conjugate prior for the sampling from 

a Poisson distribution. When the sample items are drawn 

randomly from a process, the number of defects (or 

nonconformities) in the sample is distributed according to 

Poisson law, and the gamma distribution is the conjugate 

prior to the average number of non-conformities per item. 

Under these situations, Hald [2] derived operating 

characteristic (OC) function of the single sampling plan based 

on gamma-Poisson distribution. Vijayaraghavan et al. [5] 

developed the tables for the selection of parameters of single 

sampling plan using the gamma-Poisson distribution. 

Balamurali et al. [6], have developed double sampling under 

the conditions of applications of gamma-Poisson model. 

More details can be seen in Aslam et al. [21].  It is to be 

pointed out that, in the literature, there is no repetitive group 

sampling plan is available for gamma-Poisson situation. So 

this paper attempts to develop a Bayesian RGS plan under 

gamma-Poisson model. The optimal parameters of the 

proposed plan can be determined plan for specified 

requirements under the conditions of gamma prior and 

Poisson distribution. The rest of the paper is set as: a brief 

introduction about the RGS plan under gamma-Poisson 

distribution is given in Section 2. The design of the proposed 

plan is given in Section 3. Comparison of the proposed plan 
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with the existing plans will be made and discussed in Section 

4. Some concluding remarks are given in the last section.         

2. RGS PLAN UNDER GAMMA-POISSON 

DISTRIBUTION 

The concept of repetitive group sampling plan was developed 

by Sherman [7] for the application of attribute quality 

characteristics. Through this plan, acceptance or rejection of 

the lot is based on the repeated sample results of the same lot. 

The operation of this plan is similar to that of the sequential 

sampling plan. According to Sherman, the RGS plan will 

give the minimum sample size with desired protection. 

Further, RGS plan is not nearly as efficient as the sequential 

sampling plan, but it is always more efficient than the single 

sampling plan. Several authors have investigated the RGS 

plan under various situations. Procedures and tables for the 

selection of the parameters of RGS plan have been given by 

Soundararajan and Ramaswamy [8] and Singh et al. [9]. 

Balamurali and Jun [10] developed RGS plan for the 

application of measurable characteristics under normal 

distribution. Jun et al. [11] developed variables RGS plan 

under failure censored reliability tests for Weibull 

distribution. Aslam et al. [12] studied variables RGS plan of 

Balamurali and Jun [10] with process loss consideration. 

More details about the applications of RGS can be seen in 

Aslam et al. [13].  According to Sherman [7], the operating 

procedure of the RGS plan is as follows.  

Step (i) :Select a random sample of size n from the lot of size 

N and observe      

              the number of nonconforming items in the sample, 

say d.  

Step (ii): If d≤c1, then accept the lot. If d>c2, then reject the 

lot, If c1<d≤c2,      

Then repeat the steps (i) and (ii) until a decision is made on 

the lot. 

Thus the RGS plan is completely specified by the parameters 

n, the sample size and  c1 and c2, the acceptance numbers. If 

c1=c2=c (say), then the RGS plan will converge to the single 

sampling plan. 

Gamma-Poisson distribution, which is also known as the 

negative binomial distribution, is one of the most widely used 

models in various areas of statistics such as, food industry, 

accident analysis etc. (refer Lord et al. [15], Lord [16] and 

Toft et al. [17]). This model is also used in the acceptance 

sampling plans. Vijayaraghavan et al. [18] analyzed the 

properties of OC curve of the acceptance sampling plans 

based on gamma-Poisson distribution. Vijayaraghavan et al. 

[5] developed the selection of single sampling plan using 

Gamma-Poisson distribution. When the production process 

produces output in a continuous stream and observed number 

of defects in the sample drawn from this process is distributed 

as Poisson with parameter np, where n is the sample size and 

p is the average number of defects per unit (see Hald [2]). 

According to Schilling [19], the Poisson distribution is an 

appropriate model for the number of non-conforming items in 

the sample when the ratio of a sample size to the population 

size  n N is less than 10%, n  is large and 0.10p   is 

small such that np<5. According to Sherman [7], the 

probability of acceptance of the RGS plan is given by  
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     Hence the probability of acceptance of the RGS plan 

under Poisson model is given by                                      
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When p varies from lot-to-lot at random and is distributed as 

gamma distribution which is the natural conjugate prior for 

sampling from the Poisson distribution, the density function 

of prior distribution of p is given by  
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where a  is the scale parameter and m is the shape parameter. 

If ppE )( is given then the scale parameter is obtained by 

pma / . Here m is either specified or estimated from the 

prior information about the production process. The posterior 

distribution of the number of nonconformities is reduced to 

the gamma-Poisson distribution. When the production is 

unstable, both the number of nonconforming items in the 

sample, d  and the average number of defects p are 

independently distributed. So, according to Hald [2], the 

sampling distribution of d , under the conditions that the 

process average 2.0 ,1.0 
m

p
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Based on this, the probability of acceptance of the RGS plan 

under gamma-Poisson model is given by  
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3. DESIGNING OF RGS PLAN UNDER GAMMA-

POISSON MODEL 

  In this paper, we use two points on the OC curve 

approach to design the RGS plan. Any sampling plan can be 

designed which should satisfy the producer’s and consumer’s 

risks with a minimum average sample number.  The optimal 

plan parameters are determined to satisfying the following 

inequalities.  

         1)( 1pPa   and       )( 2pPa                                         

(5) 

Here 1p  is the quality level corresponding to the producer’s 

risk, which is called acceptable quality level (AQL). On the 

other hand, 2p  is the quality level corresponding to the 

consumer’s risk which is also called limiting quality level 

(LQL). It is important to note that there may exist multiple 

solutions as there are only two equations with three unknown 

parameters. So we may determine these parameters to 

minimize the average sample number (ASN) at LQL, where 

ASN is defined as the expected number of sampled units per 

lot used for making decisions. The ASN of the RGS plan is 

given by  
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Where Pa and Pr are the probability of acceptance and 

rejection a lot respectively, under the gamma-Poisson model, 

which are given by  
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Hence to develop tables for designing an optimal RGS plan, 

we use the following nonlinear programming problem. 

     Minimize )( 2pASN            

             

Subject to  1 1aP p    and  2aP p   

121 ;0;1 cccn                 (7) 

The design parameters such as n, c1 and c2 are determined for 

various values of 1p , 2p ,  ,   and m . The optimal 

parameters of the RGS plan under gamma-Poisson model is 

tabulated in Tables 1-5 for the shape parameters m=5, 10, 25, 

50 and 100 respectively. It should be noted that the 

parametric values m in the prior distribution, range over the 

interval (0, ∞). It is also observed from the tables that the 

probability of acceptance of gamma-Poisson RGS plan do not 

differ much from those of conventional Poisson RGS plans 

for each value of p for larger values of m; that is, the OC 

function of gamma-Poisson RGS plan converges to Poisson 

RGS plan. 

<Tables 1-5 are around here> 

In this paper, we have assumed that the shape parameter of 

the gamma-Poisson distribution is known. The proposed plan 

can also be used for the situation where the shape parameter 

is unknown. Normally, producers keep the record of the 

estimated shape parameter value for their product or it can be 

estimated from the available data. From these tables we can 

observe interesting trends in the parameter values. For the 

same values of 1p , 2p ,  ,  , as the value of the shape 

parameter of the gamma-Poisson model increases, there 

exists a drastic reduction in the sample size. Also, when 2p  

increases, the sample size decreases for other fixed values 

and at the same time, as 1p  increases, the sample size also 

increases.  

3.1. Examples   

Suppose that an experimenter wants to run an experiment to 

make a decision on a product, whether to accept or reject it 

and wants to implement gamma-Poisson RGS plan. Suppose 

that the AQL and LQL values are given as, p1 = 1%, p2 = 6%, 

with  = 5% and  = 10% and the estimated value of m=25.  

Under these requirements, from Table 3 one can find the 

values of optimum parameters as n=50, c1=0 and c2=2 with 

ASN=80.260. This plan is operated as follows:  

Step (i) : Select a random sample 50 from the lot and observe 

the number of non-conforming items.  

Step (ii) : If there is no nonconforming item, then accept the 

lot. If more than 2 non-conforming items are observed, then 

immediately reject the lot. If the number of non-conforming 

items is 1 or 2,  then repeat the step (i) and (ii) until a 

decision is made.   

4. ADVANTAGES OF GAMMA-POISSON RGS PLAN 

In this section, we will make a comparative study on the 

results of the proposed plan with the gamma-Poisson single 

sampling plan of Vijayaraghavan et al. [11]. Any sampling 

plan with minimum ASN would always be preferable. Table 

7 gives the ASN of the gamma-Poisson RGS plan and 

gamma-Poisson single sampling plan. Here we consider three 

values of the shape parameter, namely 5, 50 and 150 for some 

selected combinations of AQL and LQL values. From this 

table, it is easily observed that the ASN of the proposed plan 

is lesser than the ASN of the gamma-Poisson single sampling 

plan for all the combinations of the AQL and LQL.  

 <Table 6 is around here> 

For further comparison, two figures of OC curves are 

presented. Figure 1 provides the OC curves of gamma-

Poisson RGS plan along with the gamma Poisson single 

sampling plan and conventional Poisson RGS plans, all 

having same AQL=0.01 and LQL=0.06. 

<Figure 1 is around here>  

From this figure, it can be observed that the OC curve of 

gamma-Poisson RGS plan has desirable shape as a composite 

OC curve. For good quality, i.e. for smaller values of fraction 

nonconforming, the OC curve of the gamma-Poisson RGS  
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able 1. Optimal Gamma-Poisson RGS Plan for given p1, p2, α=5% and  β=10% for m=5 

p1

 
p2

 

0.05 0.06 0.07 0.08 0.09 0.10 

0.005 72; 0,2 

(104.902) 

54; 0,1 

(64.419) 

46; 0,1 

(54.965) 

41; 0,1 

(48.754) 

36; 0,1 

(42.946) 

33; 0,1 

(39.179) 

0.010 79; 0,3 
(141.781) 

66; 0,3 
(118.204) 

51; 0,2 
(74.644) 

45; 0,2 
(65.563) 

40; 0,2 
(58.279) 

36; 0,2 
(52.451) 

0.015 94; 0,5 

(250.050) 

72; 0,4 

(158.139) 

56; 0,3 

(101.136) 

49; 0,3 

(88.494) 

44; 0,3 

(78.803) 

36; 0,2 

(52.451) 

0.020 115; 0,8 
(528.107) 

84; 0,6 
(271.355) 

67; 0,5 
(178.738) 

54; 0,4 
(118.604) 

44; 0,3 
(78.803) 

40; 0,3 
(71.051) 

0.025 150; 0,13 

(1436.667) 

96; 0,8 

(439.296) 

72; 0,6 

(232.589) 

59; 0,5 

(156.054) 

48; 0,4 

(105.426) 

43; 0,4 

(94.923) 

 

Table 2. Optimal Gamma-Poisson RGS Plan for given p1, p2, α=5% and β =10% for m =10 

p1

 
p2

 

0.05 0.06 0.07 0.08 0.09 0.10 

0.005 57; 0,1 

(69.570) 

48; 0,1 

(58.392) 

41; 0,1 

(49.931) 

36; 0,1 

(43.793) 

32; 0,1 

(38.927) 

29; 0,1 

(35.201) 

0.010 71; 0,3 

(140.913) 

53; 0,2 

(82.163) 

46; 0,2 

(70.716) 

40; 0,2 

(61.749) 

36; 0,2 

(55.114) 

29; 0,1 

(35.201) 

0.015 78; 0,4 

(200.035) 

59; 0,3 

(117.439) 

51; 0,3 

(100.634) 

40; 0,2 

(61.749) 

36; 0,2 

(55.114) 

32; 0,2 

(49.399) 

0.020 92; 0,6 

(390.834) 

71; 0,5 

(233.99) 

56; 0,4 

(142.598) 

44; 0,3 

(88.096) 

39; 0,3 

(78.315) 

36; 0,3 

(70.426) 

0.025 113; 0,9 
(969.599) 

77; 0,6 
(324.175) 

61; 0,5 
(200.215) 

49; 0,4 
(124.773) 

43; 0,4 
(111.467) 

36; 0,3 
(70.425) 

 

Table 3. Optimal Gamma-Poisson RGS Plan for given p1, p2, α =5%  and β =10% for m =25 

p1

 
p2

 

0.05 0.06 0.07 0.08 0.09 0.10 

0.005 53; 0,1 

(65.677) 

45; 0,1 

(55.394) 

38; 0,1 

(47.026) 

34; 0,1 

(41.744) 

30; 0,1 

(36.930) 

27; 0,1 

(33.237) 

0.010 60; 0,2 

(96.312) 

50; 0,2 

(80.260) 

43; 0,2 

(68.848) 

37; 0,2 

(60.007) 

30; 0,1 

(36.930) 

27; 0,1 

(33.237) 

0.015 73; 0,4 

(214.455) 

55; 0,3 

(119.441) 

47; 0,3 

(102.439) 

37; 0,2 

(60.007) 

33; 0,2 

(53.381) 

30; 0,2 

(48.156) 

0.020 80; 0,5 

(319.717) 

61; 0,4 

(178.404) 

47; 0,3 

(102.439) 

42; 0,3 

(89.264) 

37; 0,3 

(79.486) 

30; 0,2 

(48.156) 

0.025 94; 0,7 

(695.623) 

67; 0,5 

(265.022) 

52; 0,4 

(153.447) 

46; 0,4 

(133.343) 

37; 0,3 

(79.486) 

33; 0,3 

(71.665) 

0.03 123; 0,11 

(2866.564) 

79; 0,7 

(570.358) 

63; 0,6 

(331.378) 

50; 0,5 

(199.823) 

41; 0,4 

(118.324) 

37; 0,4 

(106.309) 

0.035 164; 0,17 

(19610.98) 

97; 0,10 

(1673.085) 

68; 0,7 

(484.932) 

55; 0,6 

(290.946) 

45; 0,5 

(175.284) 

37; 0,4 

(106.309) 

0.04 269; 0,33 

(1214995.0) 

126; 0,15 

(8634.507) 

83; 0,10 

(1441.903) 

59; 0,7 

(431.253) 

49; 0,6 

(257.739) 

40; 0,5 

(159.858) 

0.045 392; 0,53 

(58352120.0) 

171; 0,23 

(84844.75) 

98; 0,13 

(3949.326) 

68; 0,9 

(894.419) 

53; 0,7 

(375.645) 

44; 0,6 

(232.757) 

0.05 *** 277; 0,43 
(7796767.0) 

122; 0,18 
(18799.23) 

81; 0,12 
(2537.945) 

61; 0,9 
(775.205) 

47; 0,7 
(347.812) 

*** Plan does not exist    (Value given in bracket is the ASN of the plan at LQL) 

 

Table 4. Optimal Gamma-Poisson RGS Plan for given p1, p2, α =5%  and β =10% for m =50 

 

p1

 
2p  

0.05 0.06 0.07 0.08 0.09 0.10 

0.005 52; 0,1 

(64.674) 

44; 0,1 

(54.415) 

37; 0,1 

(46.083) 

33; 0,1 

(40.812) 

29; 0,1 

(36.017) 

26; 0,1 

(32.337) 

0.010 58; 0,2 

(95.420) 

49; 0,2 

(79.732) 

42; 0,2 

(68.342) 

37; 0,2 

(59.879) 

29; 0,1 

(36.017) 

26; 0,1 

(32.337) 

0.015 65; 0,3 

(144.537) 

54; 0,3 

(120.544) 

42; 0,2 

(68.342) 

37; 0,2 

(59.879) 

33; 0,2 

(53.262) 

29; 0,2 

(47.710) 

0.020 79; 0,5 

(335.589) 

60; 0,4 

(183.480) 

46; 0,3 

(103.489) 

41; 0,3 

(90.121) 

36; 0,3 

(80.363) 

29; 0,2 

(47.710) 

0.025 93; 0,7 

(772.423) 

66; 0,5 

(278.814) 

51; 0,4 

(158.225) 

45; 0,4 

(137.610) 

36; 0,3 

(80.363) 

33; 0,3 

(71.982) 

0.030 115; 0,10 

(2510.404) 

78; 0,7 

(634.935) 

56; 0,5 

(241.892) 

45; 0,4 

(137.610) 

40; 0,4 

(122.320) 

33; 0,3 

(71.982) 

0.035 151; 0,15 

(15803.8) 

90; 0,9 

(1409.954) 

67; 0,7 

(541.748) 

49; 0,5 

(211.656) 

44; 0,5 

(185.876) 

36; 0,4 

(110.088) 
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0.04 227; 0,26 

(609736.1) 

114; 0,13 

(6394.118) 

77; 0,9 

(1215.395) 

58; 0,7 

(484.974) 

48; 0,6 

(281.283) 

40; 0,5 

(165.280) 

0.045 323; 0,40 
(27787200) 

155; 0,20 
(73611.320) 

92; 0,12 
(3900.290) 

67; 0,9 
(1081.714) 

52; 0,7 
(423.829) 

43; 0,6 
(255.116) 

0.050 *** 223; 0,32 

(3104786.0) 

113; 0,16 

(15982.23) 

76; 0,11 

(2343.716) 

56; 0,8 

(632.927) 

47; 0,7 

(377.497) 

 

Table 5. Optimal Gamma-Poisson RGS Plan for given p1, p2, α =5%  and β =10% for m =100 

 

p1

 
2p  

0.05 0.06 0.07 0.08 0.09 0.10 

0.005 52; 0,1 

(64.562) 

43; 0,1 

(53.544) 

37; 0,1 

(46.005) 

32; 0,1 

(39.964) 

29; 0,1 

(35.954) 

26; 0,1 

(32.281) 

0.010 58; 0,2 
(95.332) 

48; 0,2 
(79.345) 

41; 0,2 
(67.967) 

36; 0,2 
(59.509) 

29; 0,1 
(35.954) 

26; 0,1 
(32.281) 

0.015 64; 0,3 

(145.579) 

54; 0,3 

(120.876) 

41; 0,2 

(67.967) 

36; 0,2 

(59.509) 

32; 0,2 

(52.897) 

29; 0,2 

(47.666) 

0.020 78; 0,5 
(347.599) 

59; 0,4 
(187.624) 

46; 0,3 
(103.796) 

40; 0,3 
(90.987) 

32; 0,2 
(52.897) 

29; 0,2 
(47.666) 

0.025 93; 0,7 

(810.018) 

65; 0,5 

(289.665) 

51; 0,4 

(159.774) 

45; 0,4 

(138.893) 

36; 0,3 

(80.584) 

32; 0,3 

(72.789) 

0.030 107; 0,9 

(1899.186) 

77; 0,7 

(684.896) 

56; 0,5 

(246.686) 

45; 0,4 

(138.893) 

40; 0,4 

(123.460) 

32; 0,3 

(72.789) 

0.035 144; 0,14 

(13773.34) 

89; 0,9 

(1592.238) 

66; 0,7 

(587.054) 

49; 0,5 

(215.850) 

44; 0,5 

(189.410) 

36; 0,4 

(111.114) 

0.04 216; 0,24 

(553953.1) 

114; 0,13 

(7748.914) 

71; 0,8 

(902.124) 

58; 0,7 

(508.715) 

48; 0,6 

(290.236) 

39; 0,5 

(173.799) 

0.045 284; 0,34 

(162222280.0) 

144; 0,18 

(52844.85) 

87; 0,11 

(3047.631) 

63; 0,8 

(759.673) 

52; 0,7 

(443.519) 

43; 0,6 

(263.362) 

0.050 *** 211; 0,29 

(2435293.0) 

108; 0,15 

(14508.74) 

76; 0,11 

(2685.128) 

56; 0,8 

(675.265) 

47; 0,7 

(395.311) 

*** Plan does not exist     (Value given in bracket is the ASN of the plan at LQL) 

 

Table 6. Average Sample Number of the Proposed Plan and Gamma-Poisson Single Sampling Plan for   

Specified p1, p2, α =5% and β=10% 

 

 

p1 

 

 

p2 

 
ASN at p2 

m=5 m=50 m=150 

SSP RGS SSP RGS SSP RGS 

0.005 
0.005 

0.01 

0.01 
0.015 

0.015 

0.02 
0.02 

0.025 

0.025 

0.05 
0.06 

0.06 

0.07 
0.07 

0.08 

0.08 
0.09 

0.09 

0.10 

191 
124 

264 

166 
492 

276 

1433 
451 

*** 

*** 

104.902 
64.419 

118.204 

74.644 
101.136 

88.494 

118.604 
71.051 

105.426 

94.923 

111 
67 

116 

79 
119 

87 

121 
93 

123 

97 

64.674 
54.415 

79.732 

68.342 
68.342 

59.879 

90.121 
80.363 

80.363 

71.982 

108 
66 

113 

77 
116 

85 

118 
91 

119 

95 

63.751 
53.513 79.321 

67.949 

67.949 
59.491 

91.083 

52.881 
80.656 

72.866 

*** Plan does not exist    (Value given in bracket is the ASN of the plan at LQL) 

 

Table 7 : Lot Acceptance Probabilities of the Proposed Plan at AQL and LQL for Different Shape 

Parameters when m0=10.0 

 

    p1 

 

  p2 

             m =9.5         m=10.0          m =10.5 m =11.0 

  Pa(p1)   Pa(p2)   Pa(p1)   Pa(p2)   Pa(p1)   Pa(p2)   Pa(p1)   Pa(p2) 

0.005 

0.005 
0.01 

0.01 

0.015 
0.015 

0.02 

0.02 
0.025 

0.025 

0.05 

0.06 
0.06 

0.07 

0.07 
0.08 

0.08 

0.09 
0.09 

0.10 

0.95465 

0.96770 
0.96747 

0.97854 

0.97758 
0.95337 

0.96181 

0.97585 
0.97749 

0.95845 

0.10102 

0.09839 
0.09986 

0.09612 

0.09523 
0.09797 

0.10019 

0.10122 
0.10063 

0.09239 

0.95477 

0.96780 
0.96770 

0.97871 

0.97787 
0.95366 

0.96224 

0.97616 
0.97790 

0.95890 

0.09943 

0.09682 
0.09801 

0.09429 

0.09319 
0.09612 

0.09812 

0.09913 
0.09838 

0.09037 

0.95488 

0.96788 
0.96791 

0.97886 

0.97813 
0.95393 

0.96263 

0.97644 
0.97827 

0.95931 

0.09799 

0.09539 
0.09632 

0.09263 

0.09135 
0.09446 

0.09630 

0.09725 
0.09635 

0.08855 

0.95498 

0.96796 
0.96810 

0.97901 

0.97838 
0.95417 

0.96298 

0.97669 
0.97861 

0.95968 

0.09667 

0.09408 
0.09480 

0.09112 

0.08968 
0.09294 

0.09453 

0.09553 
0.09450 

0.08690 
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Figure 1. Operating Characteristic Curves of Poisson RGS Plan, Gamma-Poisson Single Sampling Plan and Gamma Poisson RGS 

Plans Corresponding to   p1=0.01 (α=0.05) and p2=0.06 (β=0.10) 

 

 

 
Figure 2. Operating Characteristic Curves of Gamma-Poisson Single Sampling Plan  and Gamma Poisson RGS Plan with Same 

Parametric Values 

 

plan coincides with the OC curve of the conventional Poisson 

RGS plan. As quality deteriorates the OC curve of the 

gamma-Poisson RGS plan moves toward that for the gamma-

Poisson single sampling plan and comes close to it beyond 

the indifference quality level. It indicates that all the gamma-

Poisson RGS plans, in general, protect the producer’s interest 

against good quality levels and at the same time safeguard the 

consumer’s interest against poor quality levels. Figure 2 gives 

the OC curves of single sampling plan RGS plan under 

gamma-Poisson distribution for fixed parameters. Here we 

consider the gamma-Poisson single sampling plan with 

parameters (n=100, c=1, m=5) and gamma-Poisson RGS plan 

with parameters (n=100, c1=1, c2=3, m=5).  This figure shows 

that the gamma-Poisson RGS plan provides additional 

protection to the producer from the risk of rejecting the lots 

of good quality compared to the gamma-Poisson single 

sampling plan. For example, when the lot fraction non-

conforming is 0.005, under the gamma-Poisson single 

sampling plan, the producer has 9.68% (probability of 

acceptance at p=0.01 is 0.9032) risk of getting the lot rejected 

,whereas under the gamma-Poisson RGS plan, the producer 

will meet only 0.39% (Pa=0.9961) of risk. That is for good 

quality levels, the gamma-Poisson RGS plan will give 

themore probability of acceptance. When the quality 

deteriorates, the OC curve of gamma-Poisson RGS plan 

converges with the OC curve of the gamma-Poisson single 

sampling plan. For instance, when the lot fraction non-

conforming is 0.07, both plans will have almost 5% 

probability of acceptance.  Hence it is observed that gamma-

Poisson RGS plan has more probability of acceptance than 

the gamma-Poisson single sampling plan when the lot quality 

is good and at the same time safe-guarding the consumers.  

<Figure 2 is around here>  

5. EFFECTS OF MISSPECIFICATION OF SHAPE 

PARAMETER 

Misspecification of shape parameters of the distribution is 

taking a major role in the statistical quality control and 

distributions theory. Since the shape parameter is assumed to 

be known, one may be interested in the misspecification of 

this parameter.  The effects of misspecification of the 

parameters have been studied by many authors see for 

example Keats et al. [20]. In this section, we would like to 

study the effect of misspecification of the shape parameter on 

the probability of acceptance of the lots of the proposed 

sampling plan under the Gamma-Poisson model. Suppose 

that m be the specified shape parameter and m0 be the true 

shape parameter.  The probability of acceptance for the 

proposed plan for the specified shape parameters at both 

AQL and LQL is  calculated and tabulated in Table 8 for 

some selected combinations of p1 and p2 when  =5% and 

 =10%.   In this table, we consider the true shape parameter 
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(n = 53, c1=0, c2 =3, m = 10) 
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is m0=10. So the parameter values of the proposed plan are 

taken from Table 2. From Table 7, it is observed that when 

the specified shape parameter is less than the true shape 

parameter, then the probability of acceptance of the proposed 

plan at AQL is decreasing and at the same time the 

probability of acceptance is increasing at LQL for any 

combinations of p1, p2. However, if the specified shape 

parameter is more than the true shape parameter then the 

probability of acceptance at AQL is increasing and at LQL it 

is decreasing.  The same trend can be observed for all 

combinations of AQL and LQL.  It indicates that the higher 

value of the specified shape parameter will reduce the sum of 

producer and consumer risks. Therefore, the higher value of 

the shape parameter would be safer to be specified when the 

exact value is not known.  

  <Table 7 is around here> 

 

6. CONCLUDING REMARKS 

In this paper, we have developed a Bayesian RGS plan under 

the gamma-Poisson distribution. The optimal design 

parameters of the proposed plan are determined using the two 

points on the OC curve approach. The proposed plan is better 

than the single sampling plan for the gamma-Poisson  
distribution in terms of minimum ASN. The proposed plan 

provides the lesser ASN than the existing sampling plans. So, 

the RGS plan based on the gamma-Poisson model performs 

better than the conventional single, RGS plan and the 

gamma-Poisson single sampling plan and the proposed plan 

can be easily applied for the industrial use.  

 

REFERENCES 

 [1] Guild, R. D., and I. I. G. Raka. 1980. ”Effective 

Sampling Plans Based on a Prior  Distribution.” Journal 

of Quality Technology  12 (2): 88-93.  

[2] Hald, A. 1981. Statistical Theory of Sampling Inspection 

by Attributes, Academic Press, New York. 

[3] Case, K. E., and J. B. Keats. 1982. ”On the Selection of a 

Prior Distribution in Bayesian  Acceptance Sampling.” 

Journal of Quality Technology 14 (1): 10-18. 

 [4]  Dyer, D., and R. L. Pierce. 1993. ”On the Choice of the 

Prior Distribution in Hypergeometric Sampling.” 

Communications in Statistics – Theory and Methods 22 

(8): 2125-2146. doi:10.1080/03610929308831139. 

 [5] Vijayaraghavan, R., K. Rajagopal, and A. Loganathan. 

2008. ”A Procedure for Selection of Gamma-Poisson 

Single Sampling Plan by Attribute.” Journal of Applied 

Statistics 35 (2): 149-160. doi:10.1080/ 

02664760701775654. 

 [6] Balamurali, S., M. Aslam, and C.-H. Jun. 2012.”Bayesian 

Double Sampling Plan under Gamma-Poisson 

Distribution.” Research Journal of Applied Sciences, 

Engineering and Technology  4 (8): 949-956.  

[7] Sherman, R. E. 1965. ”Design and Evaluation of 

Repetitive Group Sampling Plans.” Technometrics 7 

(1): 11-21. doi:10.1080/00401706. 1965.10490222. [8] 

Soundararajan, V., and M. M. Ramaswamy. 1986. 

”Procedures and Tables for Construction and Selection 

of Repetitive Group Sampling (RGS) 

Plan.” The QR Journal 13 (1): 19-21. 

[9] Singh, H.R., G. Shankar, and B. N. Mohapatra. 1989. 

”GERT Analysis of Repetitive  Group Sampling Plan.”, 

Metron  47 (1-4): 339-349. 

 [10] Balamurali, S., and C.-H. Jun. 2006. ”Repetitive Group 

Sampling Procedure for Variables Inspection.” Journal 

of Applied Statistics 33 (3): 327-338. 

doi:10.1080/02664760500446010. 

[11] Jun, C-H., H. Lee, S. H. Lee, and S. Balamurali. 2010. 

”A Variables Repetitive Group Sampling Plan under 

Failure-Censored Reliability Tests for Weibull 

Distribution.” Journal of Applied Statistics 37 (3): 453-

460. doi:10.1080/ 02664760802715914. 

[12] Aslam, M., C-H. Yen, and C-H. Jun. 2011. ”Variable 

Repetitive Group Sampling Plans  with Process Loss 

Consideration.” Journal of Statistical Computation and 

Simulation 81 (11): 1417-1432. doi:10.1080/ 

00949655.2010.487826. 

[13] Aslam, M., Y. L. Lio, and C.-H. Jun. 2013. “Repetitive 

Acceptance Sampling Plans for Burr Type XII 

Percentiles.” International journal of Advanced 

Manufacturing Technology 68: 495-507.  

doi:10.1007/s00170-013-4747-x. 

 [14] Aslam, M., M. Azam, and C.-H. Jun. 2013. “A Mixed 

Repetitive Sampling Plan Based on Process Capability 

Index.” Applied Mathematical Modeling 37 (24), 

10027-10035. DOI: 10.1016/j.apm.2013.05.058. 

[15] Lord, D. 2006. ”Modeling Motor Vehicle Crashes using 

Poisson-gamma Models:  Examining the Effects of Low 

Sample Mean Values and Small Sample Size on the 

Estimation of the Fixed Dispersion Parameter.” 

Accident Analysis and Prevention 38 (4), 751-766. doi: 

10.1016/ j.aap.2006.02.001. 

[16] Lord, D., S. P. Washington, and J. N. Ivan. 2005. 

”Poisson, Poisson-gamma and Zero Inflated Regression 

Models of Motor Vehicle Crashes: Balancing Statistical  

Fit and Theory.” Accident Analysis and Prevention 37 

(1), 35-46. DOI: 10.1016/j.aap.2004.02.004. 



Sci.Int.(Lahore),27(5),3949-3956,2015 ISSN 1013-5316; CODEN: SINTE 8 3  

Sept-Oct. 

[17] Toft, N., G. T. Innocent, D. J. Mellor, and S. W. J. Reid. 

2006. ”The Gamma-Poisson Model as a Statistical 

Method to Determine if Micro-organisms are Randomly 

Distributed in a Food Matrix.” Food Microbiology 

23(1): 90-94. doi: 10.1016/j.aap.2004.02.004. 

[18] Vijayaraghavan, R., A. Loganathan, and  K. Rajagopal. 

2007. ”Analysis of Operating Characteristic Curves of 

Gamma-Poisson Sampling Plans.” American Journal of 

Mathematical and Management Sciences 27(2): 163-

177. doi:10.1080/01966324.2007.10737695. 

[19] Schilling, E. G. 1982. Acceptance Sampling in Quality 

Control. Marcel Dekker, New York.  

 [20] Keats, J. B., P. C. Nahar, and K. M. Korbell.2000. ”A 

Study of the Effect  of Mis-Specification of the Weibull 

Shape Parameter on Confidence   Bounds Based on the 

Weibull-Exponential Transformation.” Quality and  

Reliability Engineering  International 16 (1): 27-31.  

doi/10.1002/(SICI)  1099-1638 

(200001/02)16:1<27::AID-QRE284>3.0.CO;2-B. 

[21] Aslam, M., Khan, N. and Azam, M. (2013). Re-
submitted Chain ChSP-4         Sampling Plan, Caspian 

Journal of Applied Sciences  Research, 2 (3), 35-42.  
 

 


